Параллелограмм АВСД (АВ=СД, АД=ВС), <А=30° Высота ВН =2 опущена на сторону АД, а высота ВЕ=3 опущена на сторону СД. Из прямоугольного треугольника АВН найдем АВ=2ВН=2*2=4 (катет против угла 30° равен половине гипотенузы). Площадь S=ВЕ*СД=3*4=12
Рассматриваем прямоугольные треугольники образованные сторонами параллелограмма и высотами. Против острого угла лежит сторона в два раза меньше гипотенузы (стороны параллелограмма) ⇒ стороны равны 2*2=4 см и 2*3=6 см. S=a*b*sin30°=4*6*1/2=12 см².
В общем прикинуть вначале надо как выглядит график много. Но подробный анализ в нашу задачу не входит. Можно сразу сказать парабола с ветвями направленными вверх. (Смещенная вниз на 6 единиц ) По-быстрому я в таблице набросал. Смотрите вложение Так и есть. Смотрите 2ю картинку. Площадь заштрихованной фигуры и надо найти. Такое чудо считается при интеграла. Т.е. площадь фигуры ограниченной графиком функции y(x) осью абцисс и в общем случае прямыми x=a и x=b (криволинейной трапеции) равна: (1) Где пределы интегрирования a,b нам надо определить. В нашем случае это x-координаты точек пересечения графика с осью абцисс, т. е. корни уравнения: Решаем его (квадратное уравнение) D=1+4*1*6=25 x₁=-2; x₂=3 Далее, подставляем в формулу площади (1) нашу функцию и пределы интегрирования Смотрите вложение. (не хочет он, гад, принимать формулы!) Так, площадь получилась отрицательной. Ну и правильно у нас фигура под осью x лежит. Такая штука может получиться и при вычислении мощности переменного тока на части периода. Там знак важен. А поскольку нам надо площадь, можно записать модуль результата
Проведем медианы из углов при основании..Поскольку боковые стороны у равнобедренного треугольника равны, то медианы разделят их на равные части. Рассмотрим два образовавшихся треугольника, состоящих из медианы и основания. Они равны (по двум сторонам и углу между ними) следовательно третьи стороны (медианы) также равны
В равнобедренном треугольнике проведем высоту к основанию. Образуется два равных прямых треугольника. Проведенные из углов при основании равнобедренного треугольника биссектрисы будут являться биссектрисами и прямоугольных треугольников, так как они равны, то равны и биссектрисы.
Высота ВН =2 опущена на сторону АД, а высота ВЕ=3 опущена на сторону СД.
Из прямоугольного треугольника АВН найдем АВ=2ВН=2*2=4 (катет против угла 30° равен половине гипотенузы).
Площадь S=ВЕ*СД=3*4=12