сторони трикутника відносяться як 5: 6: 7, а периметр=36см
нехай х- коефіцієнт пропорційності, тоді
5х+6х+7х=36см
х=2см
тоді сторони даного трикутника:
5*2см=10см
6*2см=12см
7*2см=14см
за властивістю середньої лінії трикутника, що сполучає середини двох його сторін та дорівнює половині третьої сторони:
10см: 2=5см,
12см: 2=6см,
14см: 2=7см
5см,6см, 7см - сторони трикутника, вершини якого є середини сторін даного трикутника, відповідно його периметр
5см+6см+7см=18см
відповідь: 5см, 6см, 7см - сторони;
18см - периметр.
Объяснение:
Свойство биссектрисы угла треугольника. Решение треугольников. Вычисление биссектрис, медиан, высот, радиусов вписанной и описанной окружностей. Формулы площади треугольника: формула Герона, выражение площади треугольника через радиус вписанной и описанной окружностей.
Вычисление углов с вершиной внутри и вне круга, угла между хордой и касательной.
Теорема о произведении отрезков хорд. Теорема о касательной и секущей. Теорема о сумме квадратов сторон и диагоналей параллелограмма
Вписанные и описанные многоугольники. Свойства и признаки вписанных и описанных четырехугольников.
Геометрические места точек.
Решение задач с геометрических преобразований и геометрических мест.
Теорема Чевы и теорема Менелая.
Эллипс, гипербола, парабола как геометрические места точек.
Неразрешимость классических задач на построение.
Треугольникомназывается фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинамитреугольника, а отрезки - его сторонами.
Биссектриса
Биссектриса угла – это луч, который исходит из его вершины, проходит между его сторонами и делит данный угол пополам. Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне этого треугольника.
Свойства биссектрис треугольника
· Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.
· Биссектрисы внутренних углов треугольника пересекаются в одной точке. Это точка называется центром вписанной окружности.
· Биссектрисы внутреннего и внешнего углов перпендикулярны.
· Биссектрисы одного внутреннего и двух внешних углов треугольника пересекаются в одной точке. Эта точка — центр одной из трех вневписанных окружностей этого треугольника.
· Основания биссектрис двух внутренних и одного внешнего углов треугольника лежат на одной прямой, если биссектриса внешнего угла не параллельна противоположной стороне треугольника.
В треугольнике АОР - угол А прямой. АО=д/2. Его площадь равна (д/2)*д*sqrt(3)/3/2=д^2*sqrt(3)|6
ответ: площадь АОР = д^2*sqrt(3)|6
Здесь sqrt- корень квадратный