* * * * * * * * * * * * * * * * * * * * * * *
Найдите боковую сторону AB трапеции ABCD, если ∠ABC =60° , ∠BCD =135°, а CD = 27.
ответ: 9√6.
Объяснение: Через вершину B проведем прямую параллельную
боковой стороне СD до пересечения с основанием AD в точке E .
BCDE → параллелограмм ⇒ BE =CD =27 ; ∠CBE =180°-∠BCD =135° .
Из ΔBAE : AB/sin(∠BEA) = BE/sin(∠BEA) * * *теорема синусов * * *
AB=BE*sin(∠BEA)/sin(∠BEA)=27sin45°/sin(180°- 60°) = 27*sin45°/sin60° =
= 9√6. * * * sin45°= (√2)/2 , sin60°=(√3)/2 * * *
* * * * * * * * * * * * * * * * * * * * * * *
Найдите боковую сторону AB трапеции ABCD, если ∠ABC =60° , ∠BCD =135°, а CD = 27.
ответ: 9√6.
Объяснение: Через вершину B проведем прямую параллельную
боковой стороне СD до пересечения с основанием AD в точке E .
BCDE → параллелограмм ⇒ BE =CD =27 ; ∠CBE =180°-∠BCD =135° .
Из ΔBAE : AB/sin(∠BEA) = BE/sin(∠BEA) * * *теорема синусов * * *
AB=BE*sin(∠BEA)/sin(∠BEA)=27sin45°/sin(180°- 60°) = 27*sin45°/sin60° =
= 9√6. * * * sin45°= (√2)/2 , sin60°=(√3)/2 * * *
Для начала надо найти высоту BM к основанию AC. M - середина AC.
Ясно, что она "режет" треугольник на два "египетских" (со сторонами 9,12,15), то есть равна 12.
Эта высота к тому же медиана и биссектриса. Все точки в задаче лежат на ней.
1) поэтому от основания до точки пересечения медиан G будет
MG = 12/3 = 4;
точка пересечения биссектрис I находится так
BI/IM = AB/AM = 15/9; => MI = BM*9/(15 + 9) = 12*3/8 = 9/2;
отсюда
IG = MI - MG = 1/2;
2) тут есть множество решить. Мне нравится рассуждать так. Если продлить AM до пересечения с описанной окружностью в точке B1, то
AM*MC = BM*MB1; 9^2 = 12*MB1; MB1 = 27/4; BB1 = 12 + 27/4 = 75/4;
Это диаметр описанной окружности (центр O). Радиус OB = 75/8;
Поэтому MO = 12 - 75/8 = (96 - 75)/8 = 21/8;
как-то так, проверяйте. Полезно помнить, что в остроугольных треугольниках отношение r/R близко к 2 (у равностороннего точно равно 2); в данном случае
r = 9/2; R = 75/8; r/R = 12/25;