Найти площадь боковой поверхности правильной четырехугольной пирамиды угол пирамиды высотой 8 см в основании лежит квадрат оброзующий угол 45 градусов с боковой гранью
У колі з радіусами АО і ОВ пряма а проходить через середини радіусів так, що ОЕ = ОА/4. Оскільки відстань - це перпендикуляр, маємо прямокутний трикутник КОЕ та РОЕ. З прямокутного трикутника КОЕ: ОК = ОА/2, ОЕ = ОА/4. Тобто, катет ОЕ у два рази менший за гіпотенузу ОК. Катет, що дорівнює половині гіпотенузи, лежить проти кута 30 градусів. Тобто, кут ОКЕ = 30 градусів. Кут КОЕ = 90 - 30 = 60 градусів. Трикутники КОЕ та РОЕ рівні за прямим кутом та гіпотенузою, тобто кути КОЕ та РОЕ рівні і дорівнюють по 60 градусів. Кут АОВ = <KOE + <POE = 60 + 60 = 120 градусів.
Угол АОD как вертикальный равен углу ВОС. Рассмотрим треугольник АВС. Он прямоугольный, с прямым углом В, опирающимся на диаметр АС. Так как АО = ОС как радиусы окружности, ВО - медиана, выведенная из прямого угла. Сумма всех внутренних углов треугольника равна 180 градусам. Тогда угол ВАС равен 180 - 90 - 78 = 12 градусам. Треугольник ВОА равнобедренный, так как ВО = ОА как радиусы. Угол ОВА равен 12 градусам, тогда угол ВОА равен 180 - 12 - 12 = 156 градусам, а угол ВОС, смежный углу ВОА, равен 180 - 156 = 24 градусам. Тогда и угол АОD содержит 24 градуса.
решение представлено на фото