Высота равнобедренной трапеции отсекает равнобедренный треугольник с гипотенузой - боковая сторона трапеции. Катеты равны (54-42)/2=6. Площадь равна - (54+42)*6/2=96*3=288 ед².
Пусть общая хорда AB , O₁ и O₂ центры окружностей ;O₁A=O₂A =r ,O₁O₂ =r. --- O₁O₂ ⊥ AB. ΔO₁A O₂ (также ΔO₁BO₂) равносторонние со стороной r. AB= 2*(r√3)/2)⇒r =(AB√3)/3 .
Пусть AB и CD взаимно перпендикулярные хорды (AB ⊥ CD) , P_точка пересечения этих хорд ( P=[AB] ⋂[CD] ) b AP= DP =10 ; BP =CP =16 см.
R - ? Например , из ΔACD: AC/sin∠ADC =2R ⇒R =AC/2sin∠ADC.
Параллелограмм АВСД. Проведем биссектрису угла А, она пересечет сторону ВС в точке Н (<BAН=<ДAН). Вторая биссектриса ула В перескает сторону АД в точке М (<АВМ=<СВМ). У параллелограмма углы, прилежащие к любой стороне, в сумме равны 180° (<А+<В=180). Значит половины этих углов <ВАН+<АВМ=90° Тогда в ΔАВК <АКВ=180-(<ВАК+<АВК)=180-90=90°. Проведем окружность диаметром АВ. Если вписанный угол опирается на диаметр этой окружности, значит он -прямой. У нас <АКВ=90°, значит он опирается на диаметр и является вписанным углом в эту окружность. Вписанный угол — угол, вершина которого лежит на окружности, значит К лежит на окружности, что и требовалось доказать
Площадь равна - (54+42)*6/2=96*3=288 ед².