Дано:
АВСА1В1С1 - прямая призма
АВ = 3 см
АС = 8 см
АА1 = 15 см - высота призмы
Найти:
S(бок) , S(полн) , V.
Решение.
Запишем уравнение теоремы косинусов
a^2 = b^2 + c^2 + 2bc*cos(a)
Рассмотри треушольник АВС. По теореме косинусов имеем
ВС^2 = AC^2 + AB^2 - 2*AC*AB*cos(60) =
= 8^2 + 3^2 - 2*8*3*0,5 =
= 64 + 9 - 24 =
= 49
тогда ВС = 7 см
Площадь боковой поверхности S(бок) прямой призмы
S(бок) = АА1*(АВ + АС + ВС) =
= 15(3 + 8 + 7) =
= 270 см^2
Найдем площадь основания S(осн) как площадь треугольника по двум сторонам и синус угла между ними
S(осн) = 0,5*АВ*АС*sin(60) =
= 0.5*3*8*кор (3)/2 =
= 6*кор (3) см^2
Полщадь полной поверхности S(полн) прямой призмы
S(полн) = S(бок) + S(осн) =
= 270 + 6*кор (3) см^2
Объем V прямой призмы
V = S(осн) *h =
= 6*кор (3)*15 =
= 90*кор (3) см^3
ответ: S(бок) = 270 см^2, S(полн) = 270 + 6*кор (3) см^2, V = 90*кор (3) см^3.
Линейный угол двугранного угла - это угол, образованный двумя лучами, которые имеют общее начало, лежащее на ребре двугранного угла, и проведенными в обеих гранях перпендикулярно этому ребру.
Обе плоскости сечения содержат в себе диагональ куба А1С, которая является линией их пересечения.
Соотношение линейных величин у кубов одинаковы.
Пусть данный куб единичный, где его ребро равно 1.
Тогда его диагональ А1С по формуле диагонали куба равна √3, а диагональ его грани равна √2.
А1С=√3 А1В=√2
Искомый угол ∠В1КН, где В1К - высота треугольник аА1В1С.
В1Н - перпендикуляр из В1 на плоскость А1СВ, в частности, В1Н перпендикулярен А1В.
Из треугольник аА1В1С найдем В1К.
Треугольники А1В1С и КВ1С подобны.
А1В1:В1К=А1С:В1С
1/В1К=√3/√2
Грани куба - равные квадраты.
Диагонали квадрата перпендикулярны и точкой пересечения делятся пополам.
В1Н ⊥ А1В, ⇒ является половиной диагонали грани куба и равна ( √2):2
В1К ⊥ А1С, НК ⊥ А1С.
Треугольник В1НК - прямоугольный.
cos ∠ НВ1К=В1Н:В1К
cos ∠НВ1К=(√2/2):√2/√3=√3/2, и это косинус угла 30º.
Значит, угол В1КН, как второй острый угол прямоугольного треугольника, равен 90º-30º=60º