Дана равнобокая трапеция с основаниями bc и ad, bc=1, bac=75.на стороне ав, как на диаметре, построена окружность, которая касается стороны cd и пересекает основание ad . найти площадь трапеции.
Нсли правильно нарисовать заданную фигуру, то получится, что ребро пирамиды- это боковая сторона получившегося равнобедренного треугольника, а диагональ основания пирамиды- это основание равнобедренного треугольника. Высота, проведенная с основанию равнобедренного треугольника, также является и медианой, и биссектрисой. Медиана делит основание пополам. Получается прямоугольный треугольник с катетом(основанием, разделенным пополам) 8√2 и гипотенузой( боковой стороной) 18. Надо найти другой катет( то есть высоту правильной четырёхугольной пирамиды) при теоремы Пифагора. Пусть гипотенуза равна с, известный катет а, а неизвестный- это b. Получится:
ответ: высота правильной четырехугольной пирамиды равна 14.
В основании пирамиды квадрат, она правильная - значит, основание ее высоты находится в точке пересечения диагоналей квадрата, а все грани - равные равнобедренные треугольники.Ребро МД=√(ОД²+ОМ²)ОМ=8 см, ОД - половина диагонали квадрата и равно 6√2МД=√(72+64)=√136=4√34 - это длина бокового ребра.Площадь боковой поверхности равна произведению апофемы ( высоты боковой грани) на половину периметра основания. S=MH*4*АД:2=МН*2АДМН из треугольника МОН ( египетского!) равно 10 ( можно проверить по т. Пифагора)Sбок=10*24=240 см ²
Sabcd ≈ 7,5 ед.
Объяснение:
В треугольнике АВН угол АНВ прямой, так как опирается на диаметр. => ВН - высота трапеции.
Трапеция равнобедренная и <BAD = <СDА = 75°. <ABH = 15°.
Проведем BQ параллельно CD.
AH=HQ (АВ = BQ так как BQ=CD, a CD=AB). <ABQ = 30°.
В треугольнике АВН:
BH = 2*R*Sin75. АН = 2*R*Cos75. HD =AH+BC = 2*R*Cos75+1.
HD = (BC+AD)/2 (свойство равнобедренной трапеции) =>
Sabcd = HD*BH.
Sabcd = (2*R*Cos75+1)*2*R*Sin75. (1)
В четырехугольнике АОРD: <AOP = 360-2*75-90 = 120°. =>
<BOP = 180°-120° = 60°. =>
Треугольник ОВР - равносторонний и ВК - высота, биссектриса и медиана. КР = ОР/2 = R/2.
Проведем СТ параллельно ОР (перпендикулярно BQ).
CT =KP = R/2.
В прямоугольном треугольнике СТВ: <TCB = 15°.
СТ = ВС*Cos15°. => R/2 = Cos15°. => R = 2Cos15°.
Подставим это выражение в (1):
Sabcd = (2*2Cos15°*Cos75+1)*2*2Cos15°*Sin75.
Sabcd = (4Cos15°*Cos75+1)*4Cos15°*Sin75.
Дальше - сплошная тригонометрия.
Но подставив табличные значения, получим Sabcd ≈ 7,5 ед.
Если надо AD = AH+HD = 2RCos75+2RCos75+1 =
8Cos15*Cos75 +1 ≈ 3 ед.