Если аб основание, тогда св боковая сторона, поскольку трапеция р/б, то св = ад = 10см, Проведём высоты из вершины тупых углов к большему основанию, обазначим их, как СМ и ДН. Получили два прямоугольных треугольника, которые равны по трём углам. Поскольку в р/б трапеции углы при основании равны, значит угол БСМ = углу АДН = 30градусам. АН и БМ из равенства треугольников равны. Также они лежат напротив угла в 30 градусов, соответсвенно равны 1/2 гипотенузы Т.е СВ, значит они равны 5 см. У нас остаётся отрезок МН = СД по свойству р/б трапеции. Поскоьку АБ=16, а АН и БМ 5 см, то НМ = СД = 6 см ответ: СД = 6 см
d^2 = a^2 + a^2 - 2a*a*cos 30 = 2a^2 - 2a^2*√3/2 = a^2*(2 - √3)
d = a*√(2 - √3) = 20√(2 - √3)
Если один угол равен 30, то второй, смежный, равен 180 - 30 = 150.
Найдем длинную диагональ
D^2 = a^2 + a^2 - 2a*a*cos 150 = 2a^2 - 2a^2*(-√3/2) = a^2*(2 + √3)
D = a*√(2 + √3) = 20√(2 + √3)
Площадь ромба равна половине произведения его диагоналей.
S = D*d/2 = 20*20/2*√(2 - √3)*√(2 + √3) = 200*√(4 - 3) = 200