Решение
sin (pi/2+t)-cos(pi-t)+tg(pi-t)+ctg(5pi/2-t) = cost + cost - tgt + tgt =2cost
Объяснение:
sin (π/2 + t) - cos (π - t) + tg (π - t) + ctg (5π/2 - t). Для упрощения данного выражения используем формулы приведения. По формулам приведения: sin (π/2 + t) = cos t; cos (π - t) = – cos t; tg (π - t) = – tg t; ctg (5π/2 - t) = tg t. Таким образом, мы пришли к выражению: cos t - (– cos t) + (– tg t) + tg t = (раскроем скобки, если перед скобками стоит знак минус "-", то знак слагаемого в скобках необходимо поменять на противоположный) = cos t + cos t - tg t + tg t = (- tg t и tg t взаимно уничтожаются) = 2cos t. ответ: sin (π/2 + t) - cos (π - t) + tg (π - t) + ctg (5π/2 - t) = 2cos t.
провести диагонали АС и ВД. В прямоугольнике они равны и точкой пересечения О делятся пополам. Диагональ находим по т.Пифагора: 2*2+1*1=5 или это V5.
BO=OD=1/2 V5. Треугольник ВОД прямоугольный равнобедеренный, его гипотенуза ВД равна корню квадртаному из (1|2V5)^2+(1|2V5)^2= 1/4*5+1/4*5=2,5 или это V2,5