Пусть О - точка пересечения диагоналей параллелограмма АВСД. Рассмотри четырёхугольник АКСМ. Его диагональ АС является диагональю параллелограмма АВСД, которая точкой О делится пополам. Следовательно, одна диагональ четырёхугольника АКСМ делится точкой О пополам. Поскольку ОК = ОВ - ВК, а ОМ = ОД - МД, ВК = МД и ОВ = ОД, то ОК = ОМ. То есть диагональ КМ четырёхугольника АКСМ состоит из двух равных частей ОК и ОМ. Получилось, что и 2-я диагональ четырёхугольника АКСМ делится точкой О пополам. Мы знаем, что если диагонали четырёхугольника делятся точкой пересечения пополам, то этот четырёхугольник - параллелограмм. Что и требовалось доказать
составляем систему уравнении:
ав=6
2а+2в=11
в=6/а
2а+12/а=11
2а квадра+12=11а
2а квадрат-11а+12=0
а=4 а=1,5
в=1,5 в=4