Стереометрия середины трех сторон треугольника принадлежат плоскости. принадлежат ли ей стороны этого треугольника. p.s. ответ известен: нет. но надо доказать почему
Если известны стороны! Проведем две медианы к боковым сторонам треугольника. Так как он равнобедренный, медианы эти равны и отсекают от исходного треугольника два меньших, равных между собой. Угол при основании неизвестен, поэтому обозначим его α и его косинус - cosα Выразим медиану одного из образовавшихся треугольников по теореме косинусов. Чтобы найти косинус угла при основании, применим теорему косинусов к данному в условии задачи треугольнику, стороны которого известны. Подставив найденное значение cosα в уравнение медианы, найдем ее длину.
1)найдем уравнение стороны BC y=(4/3)x+2/3 AM будет иметь угол наклона равный 4/3, и проходить через точку A(7,-6) 3y-4x+46=0 2)Уравнение прямой проходящей через точки A (x a, y a) и P (x p, y p) в общем виде: x-xa / xd-xa = y-ya / yd-ya Мы не знаем координаты точки P, следовательно, нам необходимо найти направляющий вектор прямой AP. координаты AB(-9;4) координаты AC(-6;8) отсюда AT(T вершнина достроенного параллелограмма) (-15;12) подставим всё в уравнение x-7 /-15-7 = y+6 / 12+6 получим уравнение 9x+11y=-3 это и есть искомое уравнение 3)BF перпендикулярна AC т.е. угол наклона обратнопропорционален уравнение прямой AC : y=-4/3 * x + 10/3 угол наклона BF = 3/4 уравнение BF: 3y-4x-2=0 4) координаты вектора ВС(3,4) а вектора ВА(9,-4) скалярное произведение этих векторов равно 3*9+4*(-4)=43 Длина BC=5 длина BA=корень(97) cosB=43/(5*корень(97) )