9 см
Объяснение:
дано: ABCDA₁B₁C₁D₁ - пряма призма, ABCD - ромб. AC₁ = 10 см, BD₁ = 16 см, H = 4 см
знайти: АD
Рішення.
ABCDA₁B₁C₁D₁ - пряма призма, => бічні грані призми прямокутники (бічні ребра _ | _ основи)
1. ΔACC₁:
<ACC₁ = 90 °
гіпотенуза AC₁ = 10 см - діагональ призми
катет CC₁ = 4 см - висота призми
катет AC - діагональ підстави призми, знайти по теоремі Піфагора:
AC₁² = CC₁² + AC²
10² = 4² + AC², AC² = 84, AC = √84. √84 = √ (4 · 21) = 2 · √21
AC = 2√21 см
2. ΔBDD₁:
<BDD₁ = 90 °
гіпотенуза BD₁ = 16 см - діагональ призми
катет DD₁ = 4 см - висота призми
катет BD- діагональ підстави призми, знайти по теоремі Піфагора:
BD₁² = DD₁² + BD²
16² = 4² + BD², BD² = 240, BD = √240. √240 = √ (16 · 15) = 4 · √15
BD = 4 · √15 см
3. ΔAOD:
<AOD = 90 ° (діагоналі ромба перпендикулярні)
катет AO = AC / 2, AO = √21 см (діагоналі ромба в точці перетину діляться навпіл)
катет OD = BD / 2, OD = 2√15 см
гіпотенуза AD - сторона ромба, знайти по теоремі Піфагора:
AD² = AO² + OD²
AD² = (√21) ² + (2√15) ², AD² = 81
AD = 9 см
відповідь сторона ромба 9 см
6 000 см кв.
Объяснение:
1) Параллелограмм, вписанный в окружность, является прямоугольником.
2) Диагональ прямоугольника, вписанного в окружность, равна диаметру окружности d.
3) Согласно теореме Пифагора:
d^2 = a^2 + b^2,
где a и b - стороны прямоугольника, d - диаметр (в нашем случае он равен 65 * 2 = 130 см).
4) Решаем уравнение в частях:
d^2 = a^2 + b^2,
130^2 = 10^2 + 24^2
16900 = 100 + 576
16900 : 676 = 25 см кв - это одна квадратная часть,
следовательно, 1 часть = √ 25 = 5 см.
5) Стороны прямоугольника в см:
10 * 5 = 50 см,
24 * 5 = 120 см.
6) Площадь прямоугольника:
50 * 120 = 6 000 см кв.
ответ: 6 000 см кв.
(180-42)/2=69гр -меньший угол
69+42=111гр - больший угол