Параллелепипед прямой АВСДА1В1С1Д1, основание ромбАВСД, АВ=ВС=СД=АД, ВД=5, уголВ=120, уголД1ВД=45, ВД=биссектрисе углаВ, уголАВД=уголДВС=1/2уголВ=120/2=60, АВ=АД, треугольник АВД равнобедренный, уголАВД=уголАДВ=60, уголА=180-уголВ=180-120=60, треугольник АВД равносторонний, АВ=АД=ВД=5, треугольник Д1ВД прямоугольный, уголВД1Д=90-уголД1ВД=90-45=45, треугольник Д1ВД равнобедренный, ВД=ДД1=5, ДД1 -высота призмы, площадь боковой поверхности=периметрАВСД*ДД1=(5*4)*5=100, площадь оснований =2*(АВ в квадрате*sinA)=2*(5*5*корень3 /2)=25*корень3, площадь полная=площадь боковой+площадь оснований=100+25*корень3=25*(4+корень3), площадь диагонального сечения ВВ1Д1Д=ВД*ДД1=5*5=25
Построим данный угол с вершиной А.
1. На горизонтальной стороне угла выберем произвольно точквозведем из нее перпендикуляр. Отметим точку 2 раствором циркуля, равным радиусу вписанной окружности, и точку 3, равную высоте треугольника.
2. Проведем из точек 2 и 3 прямые, параллельно первой.
Точку пересечения прямой из т.3 и второй стороны угла обозначим В- это вторая вершина треугольника.
3. Цнтр вписанной в треугольник окружности лежит на биссектрисе. Из А проведем биссектрису угла по общепринятой методике деления угла пополам. Точка пересечения биссектрисы и прямой из точки 2 - центр (5) вписанной окружности.
4. Проведем эту окружность, точку касания с АВ обозначим М.
Расстояние от В то точки касания окружности со стороной ВС равно отрезку ВМ по свойству касательных из одной точки.
5. Раствором циркуля, равным ВМ, из В на окружности отметим точку К ( точку касания окружности с ВС).
6. Из В проведем прямую через К до пересечения с другой стороной угла в точке С. - это третья вершина треугольника.
Нужный треугольник построен.
------------