Объяснение:
так думаю.
Точка пересечения серединных перпендикуляров треугольника равноудалена от его вершин. Значит любая точка, лежащая на перпендикуляре, проведенном из точки пересечения серединных перпендикуляров, тоже равноудалена от вершин треугольника (равенство треугольников, образованных серединными перпендикулярами и общей стороной - перпендикуляром, т. е. по двум сторонам и углу между ними) .
Может теорема такая?
Точка равноудалена от сторон треугольника, если это точка принадлежит перпендикуляру, проведенному из точки пересечения серединных перпендикуляров треугольника. Может так звучит?
нравится8
;
от точки A
;
в обе возможные стороны
перпендикулярен вектору основания
, а значит его проекции накрест-пропорциональны с противоположным знаком:
, что непосредственно следует из скалярного произведения, поскольку для перпендикулярных векторов должно выполняться:
(II) ;
пропорционален вектору
, поскольку для вектора
выполняется и равенство (I) и равенство (II) осталось лишь найти масштаб вектора
;
имеет длину
;
, т.к
;
, а стало быть
;
.
/// примечание:
;
/// примечание:
.
ширина 12см
(10+12)×2
24×2=48