16 см
Объяснение:
1) Довжини дотичних, проведених до кола з однієї точки, рівні.
Вершини трапеції можна розглядати як ті самі точки, з яких проведені дотичні, які є в даному випадку сторонами трапеції.
2) Отже, на меншій підставі точка дотику відстоїть від вершини на 2 см, а на більшій підставі - на 32 см.
3) Тепер, якщо з вершини меншого підстави опустити перпендикуляр на більшу основу, то вийде прямокутний трикутник:
- його гіпотенуза = 32 + 2 = 34 см - це бічна сторона трапеції;
- горизонтальний катет (різниця між нижньою і верхньою точками торкання) = 32-2 = 30 см;
- вертикальний катет-висота Н, яку треба знайти:
Н = √ (34² - 30²) = √(1156 -900) = √ 256 = 16 см
Відповідь: 16 см
1) Длины касательных, проведённых к окружности из одной точки, равны.
Вершины трапеции можно рассматривать как те самые точки, из которых проведены касательные, являющиеся в данном случае сторонами трапеции.
2) Следовательно, на меньшем основании точка касания отстоит от вершины на 2 см, а на большем основании - на 32 см.
3) Теперь, если из вершины меньшего основания опустить перпендикуляр на большее основание, то получится прямоугольный треугольник:
- его гипотенуза = 32 + 2 = 34 см - боковая сторона;
- горизонтальный катет (разность между нижней и верхней точками касания) = 32 - 2 = 30 см;
- вертикальный катет - высота Н, которую надо найти:
Н = √ (34² - 30²) = √(1156 -900) = √ 256 = 16 см
Расстояние от точки до прямой измеряется длиной отрезка, проведенного перпендикулярно из точки к данной прямой.
О - точка, КN - прямая на плоскости сечения.
Решение сводится к нахождению высоты прямоугольного треугольника, проведенной из вершины прямого угла к гипотенузе.
Рассмотрим рисунок.
МО - высота треугольника КОN.
КN= √(КО²+ ОN²) =√(81+27)=√108=6√3
Сравним длину КО и КN.
КО=3√3, КN=6√3
Их отношение -1/2, это значение синуса 30°
Следовательно, ∠ КNО=30°. ⇒
ОМ=NО*sin (30°)=9:2=4,5см