Объяснение:
1) Правильная пирамида - это такая пирамида, в основании которой лежит правильный многоугольник, а высота проецируется в центр основания.
2) Правильным называется многоугольник, у которого все стороны и углы одинаковые. Согласно этому определению, ромб не является правильным многоугольником (не соответствует критерию равенства всех углов).
3) Следовательно, в отношении такой пирамиды не применима формула расчета площади боковой поверхности через площадь основания и cos α - угла между апофемой боковой грани и её проекцией на плоскость основания.
Верны ли утверждения?
1) В треугольнике со сторонами 2, 3 и 4 косинус угла, лежащего против меньшей стороны, меньше, чем 2/3.
Проверим по теореме косинусов:
2²=3²+4²-2*12 *cosх
4=9+16 - 24cosх
24cosх=21
cosх=7/8
ответ: неверно.
2)Всякий треугольник можно разрезать на 4 равных треугольника.
Верно. Для этого нужно провести средние линии, параллельно каждой стороне треугольника.
3)Если площадь треугольника со сторонами 3 и 4 равна 6, то третья сторона треугольника равна 5.
Верно. Это прямоугольный треугольник с катетами 3 и 4 (египетский, в которм гипотенуза равна 5. Можно проверить по теореме Пифагора)