Не могут. Там получается три треугольника и один четырехугольник. Рассмотрим треугольники. Их высоты равны, т.к. биссектрисы пересекаются в центре вписанной окружности. А основание одного из них равно сумме оснований других, это выясняется в процессе д-ва прр окружность. Получается h(a+b)/2=ha/2=hb/2 Поскольку в любой треугольник можно вписать окружность, то ни h, ни a, ни b не равны нулю, а из уравнения получается, что равны
Допустим, имеем параллелограмм ABCD, в котором AC и BD - диагонали. Доказательство: 1. Необходимо опустить перпендикуляры BK и CF на прямую, которая содержит сторону AD. 2. Рассмотрим ΔBDK: По теореме Пифагора: BD²=KD²+BK² 3. Рассмотрим ΔACF: По теореме Пифагора: AC²=AF²+CF² 4. Складываем два выражения в столбик: BD²=KD²+BK² + AC²=AF²+CF² = AC²+BD²=KD²+BK²+AF²+CF² По свойству высот в параллелограмме, BK=CF ⇒ AC²+BD²=2BK²+KD²+AF² 5. Рассмотрим ΔABK: По теореме Пифагора: BK²=AB²-AK² 6. Так как KD=AD-AK, AF=AD+FD ⇒ AC²+BD²=2(AB²-AK²)+(AD-AK)²+(AD+FD)² 7. BK=CF, AB=CD ⇒ ΔABK=ΔDCF - по свойству катета и гипотенузы ⇒ AK=DF ⇒ AC²+BD²=2(AB²-AK²)+(AD-AK)²+(AD+AK)² AC²+BD²=2AB²-2AK²+AD²-2AD*AK+AK²+AD²+2AD*AK+AK² AC²+BD²=2AB²+2AD² AC²+BD²=2(AB²+AD²) Что и требовалось доказать.
АВСД - параллелограмм. Угол В = 90 + 60 = 150 градусов. Сумма двух углов, прилегающих к одной стороне параллелограмма равна 180 градусов. Значит угол А = 180 - 150 = 3о градусов. Проведем высоту ВН. Треугольник АНВ прямоугольный. Напротив угла А = 30 лежит катет ВН вдвое меньше гипотенузы АВ. ВН = 6 : 2 = 3 см 32 : 2 = 16 см - сумма смежных сторон. АД = 16 - 6 = 10 см. S = АД * ВН = 10 * 3 = 30 см^2
В равнобедренном прямоугольном треугольнике АВС (АС гипотенуза) высота ВН = АН = НС = 14 : 2 = 7 см (Если не знаешь откуда берется такое равенство, то спрашивай, объясню в комментарии) S = АН * ВН = 7 * 7 = 49 см^2