1) Очевидно, что полупериметр больше длинны любой из сторон, в том числе бОльшей из них. (Если длина бОльшей стороны совпадает с полупериметром, треуголник "вырождается" в отрезок - одна сторона равна сумме двух других)
2) расстояние от вершины треугольника до любой точки противоположной стороны не превышает длину примыкающих к этой вершине сторон (длину бОльшей из примыкающих сторон). (Надо ли доказывать? Например, окружность с центром в данной вершине и радиусом, равным длине бОльшей из примыкающих сторон не будет пересекать протиаволежащую сторону)
Следовательно, это расстояние не может превышать полупериметр. (они могут быть только равны в случае упомянутого выше "вырожденного" треугольника)
Доказано?
Кажется так...
Sic!)
Ура!))
Пусть S-площать треугольника
Проведем МТ параллельную АР, По т. Фалеса имеем
ВК=КМ тогда ВР=РТ
АМ=МС тогда РТ=ТС, т.е. ВР=РТ=ТС=ВС/3
КВ=КМ, тогда треугольники серый и голубой -площади равны (равновелики) и желтый и оранжевый -площади равны.
АМ=МС тогда голубой и оранжевый - площади равны. Т.е. цветные треугольники равновелики и их площади равны S/4
Т.к. РС=ВС/3*2, тогда и площадь треуг. КРС= 2/3 от площади желтого
находим площадь 4-угольника. Она равна площади КРТ+оранжевый = 2/3*S/4+S/4=5*S/12
находим отношение S/(5S/12)=12/5