AO = корень из 29 (образующая)
Объяснение:
1.
r - малый радиус, равный 2
R - больший радиус, равный 5
ОО1 - высота, равная 4
АВ - образующая конуса (l)
Sус.б.п. = пи*(r+R)*l
Рассмотрим прямоугольную трапецию АВОО1. ВО=2, АО1=5, ОО1=4.
Проведем высоту ВК, равную ОО1.
Рассмотрим треугольник АКВ - прямоугольный. АК = АО1 - ВО = 3
АВ^2 = BK^2 + AK^2
АВ = 5
Sус.б.п. = пи*(2+5)*5 = 35пи
3.
R = 5 см
ОО1 = 2 см
АОВ - осевое сечение
Рассмотрим треугольник АОВ.
S = 1/2 * АВ * ОО1
АВ = 2R = 2*5=10 см
S = 1/2 * 10 * 2 = 10 см^2
Рассмотрим треугольник АО1О - прямоугольный.
АО^2 = OO1^2 + AO1^2
В Д
Е
О
С А
СЕ-биссектрисса, СО-медиана, угол САВ-15град. В тр-ке АСВ угол В=180-90-15=75град. В тр-ке ВСЕ угол ВЕС=180-45-75=60град. Смежный с ним угол СЕА=180-60=120град.
Достроим треугольник АСВ до прямоугольника. СД и АВ - диагонали, в точке пересечения делятся пополам. СО=ОА. В равнобедренном треугольнике СОА угол А=углуС=15град, тогда угол СОА=180-15-15=150град. Смежный с ним угол СОЕ=30град.
В тр-ке СЕО угол ЕСО=180-120-30=30град.
Рисунок схема без соблюдения градусов углов
СС1 = 6 см.
Объяснение:
Через конец А отрезка AB проведена плоскость α.
Через две параллельные прямые можно провести плоскость, и при том только одну. Пусть это плоскость β. Прямая АВ, естественно, лежит в этой плоскости. => Плоскость α пересекается плоскостью β по прямой АВ1 и треугольники АС1С и АВ1В, лежащие в плоскости β, подобны (так как ВВ1 параллельна СС1) с коэффициентом подобия k = AC/AB = 3/4 (так как АВ=4х, а ВС =х -дано, то АС=3х).
Из подобия имеем: СС1 = BB1*k = 8*3/4 = 6 см.