P.s.:что бы начертить окружность правильно берешь циркуль железную ножку ставишь на точку А(центр окружночти) а карандаш на точку В. и спокойно чертишь окружность.
Боковые стороны трапеции лежат на прямых a и b. Эти прямые не параллельны и лежат в одной плоскости, значит, они пересекаются. Тогда через эти прямые можно провести единственную плоскость, обозначим её за β. Плоскость β и будет плоскостью трапеции, так как все 4 вершины трапеции лежат на прямых a и b и лежат в β.
Прямая параллельна плоскости, если она параллельна какой-нибудь прямой, лежащей в этой плоскости. Из того, что прямая a параллельна плоскости α, следует, что в плоскости α существует прямая a', такая, что a || a'. Аналогично, из параллельности b и α следует, что в α существует прямая b', такая, что b || b', При этом a' и b' не совпадают, так как a и b не параллельны.
Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны. Из того, что a || a' и b || b' и того, что a и b пересекаются, следует, что α || β, что и требовалось доказать.
АВСА1В1С1 - усечённая пирамида. Предложенное сечение - трапеция с основаниями, равными высотам, проведённым в основаниях пирамиды. АМ - высота в тр-ке АВС, ВМ=МС. А1М1 - высота в тр-ке А1В1С1 В1М1=С1М1. Высота в прямоугольном тр-ке вычисляется по ф-ле h=а√3/2 АМ=8√3·√3/2=12. А1М1=4√3·√3/2=6. АММ1А1 - трапеция. Её площадь: S=(a+b)h/2=(АМ+А1М1)h/2 ⇒ h=2S/(АМ+А1М1)=2·54/(12+6)=6. Площадь правильного тр-ка: S=a²√3/4. S1=(8√3)²·√3/4=48√3. S2=(4√3)²·√3/4=12√3. Объём усечённой пирамиды: V=h(S1+√(S1·S2)+S2)/3 V=6(48√3+√(48√3·12√3)+12√3)/3=2(48√3+24√3+12√3)=168√3.
берешь циркуль
железную ножку ставишь на точку А(центр окружночти)
а карандаш на точку В.
и спокойно чертишь окружность.