Шаги построения:
1) Проведем к стороне AB перпендикуляр P выходящий из точки B (при угольника или циркуля)
2) Проведем к стороне BC перпендикуляр S, который выходит из точки G, являющийся серединой BC (опять же все при угольника или циркуля.) Этот перпендикуляр называют серединным перпендикуляром к стороне BC.
3) В пересечении перпендикуляров P и S получаем точку O.
4) Начертим окружность c центром в точке O и проходящую через точку B.
5) В пересечении этой окружности и стороны AC получаем необходимую точку D.
Объяснение:
Поскольку радиус OB ⊥ AB, то AB является касательной к окружности в точке B.
В ΔСOB отрезок OG является медианой и высотой к стороне BC, а значит ΔСOB равнобедренный, а именно OС = OB, а значит OC тоже радиус данной окружности, иначе говоря, построенная окружность пересекает также и точку С, то есть AC является секущей, проходящей через данную окружность.
Но тогда по теореме касательной и секущей имеем:
AB^2 = AC * AD
Вариант 1: АС = √13 см.
Вариант 2: АС = 5 см.
Объяснение:
В треугольнике АВС АВ=3√2, ВС=1, АС=√2*R (дано). Найти АС.
По теореме синусов: АС/sinB = 2R. => R√2/SinB = 2R.
SinB = √2/2. Значит угол равен 45 градусов и cosB=√2/2. По теореме косинусов:
АС²= АВ²+ВС² - 2АВ*ВС*cosB. Подставляем значения и получаем
АС² =18+1 - 2*3√2*1*√2/2 =13.
АС = √13 см.
Второй вариант:
Угол при вершине В тупой и тогда косинус этого угла отрицательный и равен -√2/2. Тогда
АС²= АВ²+ВС² + 2АВ*ВС*cosB = 18+1 + 6 =25.
АC = √25 = 5 см.
Проверка по теореме о неравенстве треугольника:
Вариант 1: АВ≈4,24; ВС=1; АС≈3,6. 4,24 < 3,6+1. Треугольник существует.
Вариант 2: АВ≈4,24; ВС=1; АС=5. 5 < 4,24+1. Треугольник существует.
ответ:122 градуса