Для решения подобных задач есть, если можно так сказать, классический Обозначим вершины трапеции АВСД. Из вершины С параллельно диагонали ВД проводится прямая до пересечения с продолжением АД в точке Е. ВС|| АЕ по условию, ВД||СЕ по построению. ⇒ ВСЕД - параллелограмм, ⇒ ДЕ=ВС=4 см. Тогда АД=5+4=9 см В треугольнике АСЕ известны три стороны. Площадь этого трегугольника равна площади данной трапеции. Действительно, Ѕ (АВСД)=Н*(ВС+АД):2 Ѕ (АСЕ)=Н*(ВС+АД):2 Вычислив по формуле Герона площадь треугольника АСЕ, тем самым найдем площадь трапеции АВСД. Ѕ=√(р*(р-а)*р-b)*(p-c)) где a,b,c - стороны треугольника, р - полупериметр. р=Р:2=(8+7+9):2=12 см Ѕ АВСД=√(12*4*5*3)=√(36*4*5)=12√5 см² или ≈26,8328 см² ---------Вариант решения. Можно опустить высоту СН, выразить ее квадрат по т. Пифагора из прямоугольных треугольников АСН и ЕСН и приравнять это значение, приняв АН=х, НЕ=9-хЗатем по т. Пифагора из любого из треугольников найти высоту и затем площадь трапеции. Этот более длинный и вычислений больше, но именно так, когда это необходимо, можно найти высоту.
Можно воспользоваться признаками равенства треугольников по трём сторонам, а затем по двум сторонам и углу между ними, если вы его уже как аксиомами без доказательства. Нам известны две стороны, а медиана, упирающаяся в одну из них, образует третью сторону, делящую на равные отрезки одну из известных(получается как бы цифра 4, где косая черта - одна сторона, вертикальная - та, в которую уперлась медиана, а горизонтальная черта - сама медиана). У сравниваемых треуг-в Медианы равны, соответственно, поделенные ими равные отрезки равных сторон тоже равны, и ещё две стороны соответственно равны из условия - это признак равенства по трём сторонам, т.е. мы доказали, что эти части треугольников равны. А коли они равны, то и углы при них соответственно равны, а, значит, у нас есть признак равенства по 2м сторонам(косая и верт. черты) и углу между ними(вершина четверки). его и применяем. задача решена)
Можно воспользоваться признаками равенства треугольников по трём сторонам, а затем по двум сторонам и углу между ними, если вы его уже как аксиомами без доказательства. Нам известны две стороны, а медиана, упирающаяся в одну из них, образует третью сторону, делящую на равные отрезки одну из известных(получается как бы цифра 4, где косая черта - одна сторона, вертикальная - та, в которую уперлась медиана, а горизонтальная черта - сама медиана). У сравниваемых треуг-в Медианы равны, соответственно, поделенные ими равные отрезки равных сторон тоже равны, и ещё две стороны соответственно равны из условия - это признак равенства по трём сторонам, т.е. мы доказали, что эти части треугольников равны. А коли они равны, то и углы при них соответственно равны, а, значит, у нас есть признак равенства по 2м сторонам(косая и верт. черты) и углу между ними(вершина четверки). его и применяем. задача решена)
Обозначим вершины трапеции АВСД.
Из вершины С параллельно диагонали ВД проводится прямая до пересечения с продолжением АД в точке Е.
ВС|| АЕ по условию, ВД||СЕ по построению. ⇒
ВСЕД - параллелограмм, ⇒
ДЕ=ВС=4 см.
Тогда АД=5+4=9 см
В треугольнике АСЕ известны три стороны.
Площадь этого трегугольника равна площади данной трапеции. Действительно,
Ѕ (АВСД)=Н*(ВС+АД):2
Ѕ (АСЕ)=Н*(ВС+АД):2
Вычислив по формуле Герона площадь треугольника АСЕ, тем самым найдем площадь трапеции АВСД.
Ѕ=√(р*(р-а)*р-b)*(p-c)) где a,b,c - стороны треугольника, р - полупериметр.
р=Р:2=(8+7+9):2=12 см
Ѕ АВСД=√(12*4*5*3)=√(36*4*5)=12√5 см² или ≈26,8328 см²
---------Вариант решения. Можно опустить высоту СН, выразить ее квадрат по т. Пифагора из прямоугольных треугольников АСН и ЕСН и приравнять это значение, приняв АН=х, НЕ=9-хЗатем по т. Пифагора из любого из треугольников найти высоту и затем площадь трапеции. Этот более длинный и вычислений больше, но именно так, когда это необходимо, можно найти высоту.