Так как внешний угол треугольника равен сумме двух углов не смежных с ним, то <А+<В= 60 гр. Треугольник АВС равнобедренный и углы при основании равны, то есть <А=<В=30 гр. Расстояние от вершины С до прямой АВ есть перпендикуляр например на чертеже отметь его СН), поэтому треугольник АСН прямоугольный.
В прямоугольном треугольнике, катет лежащий против угла 30 гр. равен половине гипотенузы. <А=30 гр, катет АС (основание треугольника АВС) равен 37 см, следовательно СН=1/2АС=1/2 * 37 = 18,5 см.
ответ. Расстояние о вершины С до прямой АВ равно 18,5 см. (или СН=18,5 см)
∠ ВАС =90⁰;
АВ =16см;
АС = 12 см ;
___ АМ ⊥ ВС;
Найти : высоту АМ
Рисунок дан в приложении. В нашем прямоугольном треугольнике АВС к гипотенузе ВС проведена высота АМ.
Из свойств прямоугольных треугольников известно: Высота прямоугольного треугольника, проведенная к гипотенузе, делит его на два треугольника, подобные друг другу, и подобные данному треугольнику.
То есть образовавшийся Δ МВА подобен исходному треугольнику АВС.
Из свойств их подобия следует: АМ : АВ = АС : ВС; откуда
АМ = (АВ ∙ АС) : ВС
ВС , как гипотенуза исходного Δ АВС, равна квадратному корню из суммы квадратов его катетов.
ВС = √(АВ2 +АС2);
ВС = √(162+122) = √ (144 +256) = √400 = 20 (см)
Найдем высоту АМ. АМ = (АВ∙АС):ВС = 12∙16:20 = 9,6 см ответ: Высота, проведенная в гипотенузе данного треугольника, равна 9,6 см.