Объяснение:
1)
Дано:
Параллелограм
S=48см
h(a)=2см
h(b)=6см
а=?
b=?
_________
Площадь параллелограма равна произведению высоты на сторону, на которую опущена эта высота
S=а*h(а)
Отсюда
а=S/h(a)=48/2=24 см сторона параллелограма
b=S/h(b)=48/6=8 см сторона параллелограма.
ответ: 24см; 8см.
2)
Дано:
АВС- прямоугольный треугольник
АС=3√3см
<АВС=60°
АВ=?
СВ=?
_________
sin<B=AC/AB
√3/2=3√3/AB
AB=3√3*2/√3=6см.
tg60°=AC/CB
√3=3√3/CB
CB=3√3/√3=3см.
S=1/2*AC*CB=1/2*3√3*3=4,5√3 см²
ответ: СВ=3см; АВ=6см; S=4,5√3см²
3)
Дано:
ABCD- трапеция.
ВС=6см
АD=14см
АВ=СD=5см
S=?
_______
Решение
АК=МD
AK=(AD-BC)/2=(14-6)/2=8/2=4 см.
∆АКВ- прямоугольный треугольник.
По теореме Пифагора
ВК=√(АВ²-АК²)=√(5²-4²)=√(25-16)=√9=3 см
S=BK(BC+AD)/2=3(6+14)/2=3*20/2=30см²
ответ: 30см²
Решено zmeura1204.
Рассмотрим вариант, когда прямая имеет угловой коэффициент k>0, тогда она наклонена к положительному направлению оси ОХ под острым углом. Из чертежа видно, что угол наклона не может быть тупым, т.к. тогда S треугольника будет больше 3 .
От координатного угла отсекается ΔВОК , площадь которого S=3. Это прямоугольный треугольник, его площадь равна половине произведения катетов., то есть .
Пусть ОК=3 ед. , а ОВ=2 ед. , тогда .
Точка В в этом случае будет иметь координаты В(2,0), а точка К(0,-3) .
Подставим в уравнение прямой координаты точки А(4,3) и , например, В(2,0), получим:
Или можно использовать то, что точка пересечения с осью ОУ имеет координаты К(0,-3). Тогда уравнение прямой имеет вид: y=kx-3 . И в это уравнение уже подставить координаты точки А(4,3) :
Также можно было составить уравнение прямой, проходящей через две точки А и В ( или А и К) .
Смотри рисунок.
будет 345_87655___87655333865322467