Расстоянием от точки до прямой называется длина кратчайшего перпендикуляра. таким образом, необходимо опустить перпендикуляр из точки с на прямую sa. для этого достроим равнобедренный треугольник sca и перпендикуляр сk, при чем k лежит на самой стороне sa, так как угол sca острый. обозначим ck за х. тогда по т. пифагора: х^2+sk^2=sc^2 x^2+ak^2=ac^2. отсюда приравняем: sc^2-sk^2=ac^2-ak^2. 4-sk^2=sqrt2(диагональ через 1 вершину в правильном шестиугольнике в sqrt2 раза больше стороны, т.е. ac=ab*sqrt2=-sk)^2. 4-sk^2=sqrt2-(4-4sk+sk^2). 4-sk^2=sqrt2-4+4sk-sk^2. 4=sqrt2-4+4sk. 4sk=8-sqrt2. sk=2-(sqrt2)/4. kc^2=sc^2-sk^2=4-(4-sqrt2+1/8)=sqrt2-1/8. kc=sqrt(sqrt2-1/8).
из ΔАСН sinA=CH/AC→ AC=CH*sinA= 3√3 * sin60°= 3√3 * 2/√3 = 6
cosA=AH/AC →AH=cos60° / 6 = 0,5 / 6 = 3 , (∠ACH=30°, AH= AC/2= 6/2=3)
ΔBHC: BH^2 = BC^2- CH^2 =(5√3)^2 - (3√3)^2 = 75- 27 = 48
BH = √48 = 4√3
sinB=CH/CB= 0,6 cos BCH =0,6→∠В= посмотри в таблице
AB=BH+HA= 4√3+3, ∠С= 180-(60°+∠В)=
ответ: AC=6, АВ=3+4√3, ∠В=?, ∠С= ?