Объяснение:
Я не очень умею объяснять, но попробую
Крч провели мы эти линии и получили несколько паралеллогрмаммов (я наверное ушла не в ту степь, но пофиг), а у них противоположные стороны равны. Так мы нашли отрезки В1В, ВА1, А1С, СС1, С1А, АВ1. Мы видим, что каждая прямая состоит из двух одинаковых отрезков, равных одной из сторон исходного треугольника, значит каждая сторона ⚠︎С1В1А1 в два раза больше параллельно лежащей стороны ⚠︎АВС, следовательно периметр С1В1А1 будет в два раза больше, чем у АВС
На фото можно увидеть решение( "дано" не будет оно приняло ислам)
1. Острый угол меньше 90°. Сумма смежных углов равна 180°, значит смежный с острым угол будет больше 90°, т.е. тупой.
ответ: в)
2. ∠1 - искомый, ∠2 и ∠3 - смежные с ним. Так как сумма смежных углов равна 180°, то
∠1 + ∠2 = 180° и ∠1 + ∠3 = 180°, значит ∠2 = ∠3 = 210°/2 = 105°.
∠1 = 180° - ∠2 = 180° - 105° = 75°
3. Полный угол составляет 360°, острый угол меньше 90°. Пусть n - количество углов с вершиной в одной точке.
360° / n < 90°
4 / n < 1
n > 4, т. е. 5 лучей можно провести.
4. Пусть 6 см - основание треугольника, тогда сумма боковых сторон:
18 - 6 = 12 см, а так как боковые стороны равны, то каждая равна 6 см.
Если 6 см - боковая сторона, то приходим к тому же результату:
18 - 6 · 2 = 18 - 12 = 6 см.
ответ: треугольник равносторонний со стороной 6 см.
5. ∠1 и ∠2 - внутренние односторонние при пересечении прямых m и n секущей а, так как их сумма равна 180° (135° + 45° = 180°), то прямы параллельны.
ответ: б)
6. ∠1 + ∠2 < ∠3
Сумма углов треугольника равна 180°:
∠1 + ∠2 + ∠3 = 180°, значит ∠1 + ∠2 = 180° - ∠3.
Подставим в первое неравенство:
180° - ∠3 < ∠3
2∠3 > 180°
∠3 > 90°
Значит треугольник тупоугольный.
ответ: в)
7. Пусть х - меньший угол, тогда 2х - больший. Сумма углов треугольника 180°:
x + x + 2x = 180°
4x = 180°
x = 45°
Углы треугольника 45°, 45° и 90°.
ответ: 2) прямоугольный, 3) равнобедренный.
8. Любая сторона треугольника меньше суммы двух других сторон. Этому условию удовлетворяют только тройки чисел: 2, 3, 4 и 3, 4, 5.
ответ: 2 треугольника.
Часть В.
1. Если в треугольнике медиана является биссектрисой, то треугольник равнобедренный.
АВ + AD = Pabd - BD = 18 - 5 = 13 см
BC = AB, CD = AD,⇒
Pabc = 2(AB + AD) = 2 · 13 = 26 см
2. АМ = МС = АС/2 = 12/2 = 6 см, так как ВМ медиана.
В ΔАВМ АО - биссектриса и высота, значит ΔАВМ равнобедренный,
АВ = АМ = 6 см.
3. Сумма острых углов прямоугольного треугольника равна 90°:
∠А + ∠В = 90°, тогда сумма их половин в два раза меньше:
∠1 + ∠2 = 45°.
В ΔАОВ: ∠АОВ = 180° - (∠1 + ∠2) = 180°- 45° = 135°
4. Все углы равностороннего треугольника равны 60°, тогда
∠DAC = ∠DCA= 60° - 15° = 45°.
ΔADC: ∠ADC = 180° - (∠DAC + ∠DCA) = 180° - 90° = 90°
5. Неточность в условии:
Биссектрисы AD и BE треугольника АВС пересекаются в точке О. Найдите угол С треугольника, если ∠АОЕ = 50°.
∠АОЕ - внешний угол треугольника АОВ, значит равен сумме двух внутренних, не смежных с ним:
∠АОЕ = ∠1 + ∠2 = 50°
Так как AD и ВЕ биссектрисы, то сумма углов А и В треугольника АВС будет в два раза больше:
∠А + ∠В = 2∠АОЕ = 2 · 50° = 100°.
Так как сумма углов треугольника равна 180°, то
∠С = 180° - (∠А + ∠В) = 180° - 100° = 80°
6. ∠ОАС = ∠ОСА, ⇒⇒ΔОАС - равнобедренный, тогда медиана BD является и высотой, значит и ΔАВС тоже равнобедренный.
Расстояние от точки до прямой - длина перпендикуляра, проведенного из точки к этой прямой.
OD⊥AC,⇒ ОС = 5 см.
Проведем ОЕ⊥АВ и OF⊥ВС. ОЕ = 8 см по условию.
Но BD и биссектриса равнобедренного треугольника АВС, а все точки биссектрисы равноудалены от сторон угла, значит
OF = OE = 8 см
1)Область определения квадратичной функции - (-∞;+∞)
2)Точки пересечения с осью ох ищем из условия у=0, решая квадратное уравнение -х²-х+2=0, или х²+х-2=0, дискриминант равен 1-4*1*(-2)=9, значит, 2 различных корня уравнение имеет. Это -2 и 1. Значит, точки пересечения с осью ох такие (-2;0) м (1;0)
А точки пересечения с осью оу ищем из условия х=0, т.е. , если х=0, то у=-0²-0+2, и точка пересечения с осью ординат одна, а именно (о;2)
3) найдем производную функции , решив уравнение игрек штрих равен нулю, т.е. найдем производную этой функции. она равна -2х-1. Приравниваем ее к нулю. -2х-1=0, -2х=1, откуда, х= -1/2, при переходе через точку х= -1/2 производная мЕняет знак с плюса на минус, значит, на промежутке(-∞;-1/2) функция ВОЗРАСТАЕт, а на промежутке (-1/2;+∞) ФУНКЦИЯ УБЫВАЕТ.
4) Точка х=-1/2 - точка экстремума, а именно точка максимума, значение функции в ней равно -(-1/2)²-(-1/2)+2=-1/4+1/2+2=1+(1/4), по данным исследования строим график.