Отрезок BD - диаметр окружности с центром О. Хорда AC делит пополам радиус OB и перпендикулярна к нему. Найдите углы четырёхугольника ABCD и градусные меры дуг AB BC CD и AD. --------- Соединим центр окружности с вершиной А. Отрезок ОА - радиус, МО равен его половине. sin ∠ МАО равен МО:АО=1/2. Это синус 30°∠ МАО=30°, ⇒∠ АОВ=60°. ВО=АО=радиус окружности.⇒ △ АОВ равнобедренный. Сумма углов треугольника 180 градусов. ∠ ОВА=∠ОАВ=(180°-60°):2)=60° ⇒ △ АОВ- равносторонний. Углы ВАD и ВСD опираются на диаметр ⇒ они прямые=90°. ⊿ ВСD и ⊿ВАD -прямоугольные, и ∠СDВ=∠АDВ=180°-(90°-60°)=30° ⊿ ВСD=⊿ВАD. ∠ D=2 ·∠АDВ=2·30°=60° Сумма углов четырехугольника 360° ∠АВС=360°- 2·90°- 60°=120° Градусная мера дуги равна центральному углу, который на нее опирается. На дугу АВ опирается центральный угол АОВ=60°⇒ ее градусная мера 60° На дугу СВ опирается центральный угол СОВ=60°⇒ ее градусная мера 60° В треугольнике САD ∠САD=∠DАС=60° Вписанный угол равен половине градусной меры дуги, на которую опирается. На дугу CD опирается вписанный угол САD=60°⇒ она равна 2·60°=120° На дугу АD опирается вписанный угол АСD=60°⇒ она равна 2·60°=120° ответ: ∠А=С=90° ∠В=120° ∠Д=60° градусные меры дуг AB=60° BC=60° CD=120° AD=120°.
1/ AB параллельна m, площадь АВС=1/2АВ*СН, СН-высота на АВ, так как две прямые параллельны, то перпендикуляр к одной из них будет перпендикулярен и другой, СН перпендикулярна m - СН величина поястоянная между двумя параллельными прямыми, а основание одно, какие бы точки не брались на m , площадь треугольника всегда будет=1/2АВ*СН 2. треугольник АВС, ВМ медиана на АС, АМ=МС=1/2АС, проводим высоту ВН на АС, площадь АВМ=1/2АМ*ВН=1/2*1/2АС*ВН=1/4*АС*ВН, площадь МВС=1/2МС*ВН=1/2*1/2АС*ВН=1/4*АС*ВН, площади треугольников равны, медиана делит треугольник на 2 равновеликих треугольника
уравнение окружности (х+3)²+(у-3)²=13
уравнение прямой у=3