1) При пересечении АВ и СД образовались два вертикальных угла х и два вертикальных угла y. Вертикальные углы равны. х+y=180, т.к. они смежные значит х+х=100 или y+y=100, но y - тупой угол, значит >90градусов, следовательно, y+yне равно 100. Получаем уравнения: х+х=100 х+y=180
из первого: 2х=100, х=50градусов. из второго: y=180-50=130градусов.
2) т.к. ОС - биссектриса углаАОК, то уголАОС=углуСОК т.к. ОК - биссектриса угла СОВ, то уголСОК=углуКОВ. Следовательно, уголАОС=углуСОК=углуКОВ. Получили три равных угла, сумма которых =60градусов, следовательно, уголАОС=углуСОК=углуКОВ=60:3=20градусов.
OC ⊥ BM ( OC ⊥ BC ,где O центр малой окружности , BC касательная) ⇒ AM | | OC . MC/CB= AO/OB (обобщенная теорема Фалеса) .
2,4 /4 =r/(2R -r) ⇔ r=3R/4 (1) .
Из ΔBCO по теореме Пифагора :
OB² - OC² =BC² ;
(2R -r)² - r² = 4² ⇔ 4R(R-r) =16 ⇔ R(R-r) =4 (2).
R(R -3R/4) =4 ⇒ R =4. ⇒ r=3R/4 = 3.
AD =AC+CD.
AM =√(AB² -BM²) =√((2R)² -(MC+CB)² ) =√(8² -6,4²) =√(8 -6,4)(8 +6,4) =4,8.
AM можно вычислить по другому: AM/OC =MB/CB ⇔ AM/3 =6,4/4⇒
AM =4,8.
---
AC =√(BC² +AM²) =√(2,4² +4,8²) =√(2,4² +(2*2,4)²) = 2,4√5.
AC*CD = MC*BC ⇔ 2,4√5 *CD =2,4*4⇒ CD =4/√5 =4√5 / 5 =0,8√5.
AD =AC+CD= 2,4√5 + 0,8√5 =3,2√5 .