Рассмотрим внешние получившиеся треугольники. Они будут все равны между собой по двум сторонам и углу между ними
Угол между сторонами - это угол начального правильного пятиугольникам. а раз начальный пятиугольник правильный, то все его углы равны. Каждая сторона, прилегающая к этому углу равна половине длины стороны начального правильного пятиугольника. Значит, все эти стороны тоже равны между собой. Получается, что все внешние треугольники равны. У равных треугольников равны соответствующие элементы. в данном случае нас интересуют их третьи стороны - те, что образовали новый пятиугольник. раз они равны, то пятиугольник прявильный, чтд
Чертеж то несложный, просто пятиугольник и внутри еще один
Рассмотрим внешние получившиеся треугольники. Они будут все равны между собой по двум сторонам и углу между ними
Угол между сторонами - это угол начального правильного пятиугольникам. а раз начальный пятиугольник правильный, то все его углы равны. Каждая сторона, прилегающая к этому углу равна половине длины стороны начального правильного пятиугольника. Значит, все эти стороны тоже равны между собой. Получается, что все внешние треугольники равны. У равных треугольников равны соответствующие элементы. в данном случае нас интересуют их третьи стороны - те, что образовали новый пятиугольник. раз они равны, то пятиугольник прявильный, чтд
В развертке CD - высота цилиндра, сторона AD равна длине окружности основания.
Из прямоугольного треугольника ACD:
CD = AC · sin 30° = 4 · 1/2 = 2 см
AD = AC · cos 30° = 4 · √3/2 = 2√3 см
Тогда площадь боковой поверхности:
Sбок = Sabcd = CD · AD = 2 · 2√3 = 4√3 см²
Длина окружности основания:
C = 2πR
2πR = AD = 2√3
R = 2√3/(2π) = √3/π см
Площадь основания:
Sосн = πR² = π · (√3/π)² = 3/π см²
Sпов = Sбок + 2 · Sосн
Sпов = 4√3 + 2 · 3/π = 4√3 + 6/π см²