Найдем сторону квадрата. Сторона треугольника АС - диагональ квадрата. Следовательно, угол ОАС в этом треугольнике равен 90:2 = 45 градусов. Обозначим сторону квадрата за Х. Тогда АС = Х√2 (как диагональ квадрата), АО = Х/2 (по условию т.О - середина стороны). Площадь треугольника АОС равна 1/2*Х√2*Х/2*sin45° = X^2/4. Сторона ОС треугольника равна (из треугольника ВОС - он прямоугольный, с катетами Х/2 и Х) Х√5/2.
Радиус описанной возле этого треугольника окружности равен: (Х/2*Х√5/2*Х√2)/(4*Х^2/4) = Х*√10/4. Что по условию равно √10: Х*√10/4 = √10, откуда Х = 4.
Таким образом, сторона квадрата равна 4 см. Периметр - сумма сторон квадрата - равен 4*4 = 16 см.
Соединив данную точку с вершинами треугольника, получим треугольную пирамиду с равными (это вытекает из условия) рёбрами. Но тогда будут равны и их проекции на плоскость треугольника и на плоскость, перпендикулярную плоскости треугольника. Так как вторые проекции лежат на прямых, проходящих через вершину пирамиды и пересекающих плоскость треугольника в одной точке (равноудалённой от вершин треугольника), то эти проекции совпадают). Но по условию через вершину пирамиды и данную точку проходит и данная в условии прямая. А это значит, что она совпадает с проекцией рёбер пирамиды на плоскость, перпендикулярную плоскости треугольника. Но эта проекция, а вместе сней и данная прямая, перпендикулярна плоскости треугольника.
Если достроим прямоугольный треугольник до прямоугольника так, чтобы гипотенуза была его диагональю (то есть присоединим к треугольнику второй такой же точно), то площадь такого прямоугольника будет ровно в 2 раза больше площади треугольника, то есть 2 * 512 * корень(3) = 1024*корень(3).
А также площадь прямоугольника равна произведению катетов. Обозначим меньший катет буквой х, тогда больший будет х*tg(x) = x*корень(3).
Итого, имеем площадь прямоугольника х*х*корень(3) = 1024*корень(3).
Корень(3) сокращаем, остаётся х*х = 1024. Отсюда х = корень(1024) = 32.
Найдем сторону квадрата.
Сторона треугольника АС - диагональ квадрата.
Следовательно, угол ОАС в этом треугольнике равен 90:2 = 45 градусов.
Обозначим сторону квадрата за Х.
Тогда АС = Х√2 (как диагональ квадрата), АО = Х/2 (по условию т.О - середина стороны).
Площадь треугольника АОС равна 1/2*Х√2*Х/2*sin45° = X^2/4.
Сторона ОС треугольника равна (из треугольника ВОС - он прямоугольный, с катетами Х/2 и Х) Х√5/2.
Радиус описанной возле этого треугольника окружности равен:
(Х/2*Х√5/2*Х√2)/(4*Х^2/4) = Х*√10/4.
Что по условию равно √10: Х*√10/4 = √10, откуда Х = 4.
Таким образом, сторона квадрата равна 4 см.
Периметр - сумма сторон квадрата - равен 4*4 = 16 см.
ответ: 16 см.