В параллелограмме АВСD с вершины тупого угла проведены высоты ВК и ВМ к сторон АD и DС соответственно. ВК = 3 см, ВМ = 5 см, ∠ КВМ = 30о. Найдите периметр параллелограмма АВСD, cторону BC, угол D и угол BAK
Рассмотрим четырехугольник KBMD. Сумма углов в четырехугольнике равна 360°, значит 30°+90°+90°+∠KDM=360°
Получаем, ∠KDM=360-210=150°
Так как сумма внутренних односторонних углов при параллельных прямых BC и AD, и секущей CD равна 180°, то ∠BCM+∠KDM=180°.
Следовательно, ∠BCM=180-150=30°.
В параллелограмме противоположные углы равны, значит ∠A=∠C=30°, тогда в прямоугольном треугольнике ABK гипотенуза AB=2*BK=2*3=6 см, а в прямоугольном треугольнике BMC гипотенуза BC=2*BM=2*5=10 см.
В параллелограмме противоположные стороны равны, значит:
AD=BC=10 см, CD=AB=6 см.
Периметр параллелограмма АВСD равен 10+10+6+6=32 см.
Дано: δ авс ∠с = 90° ак - биссектр. ак = 18 см км = 9 см найти: ∠акв решение. т.к. расстояние от точки измеряется по перпендикуляру, то опустим его из (·) к на гипотенузу ав и обозначим это расстояние км. рассмотрим полученный δ акм, т.к. ∠амк = 90°,то ак гипотенуза, а км - катет. поскольку, исходя из условия, катет км = 9/18 = 1/2 ак, то ∠кам = 30°. т.к. по условию ак - биссектриса, то ∠сак =∠кам = 30° рассмотрим δакс. по условию ∠аск = 90°; а∠сак = 30°, значит, ∠акс = 180° - 90° - 30° = 60° искомый ∠акв - смежный с ∠акс, значит, ∠акв = 180° - ∠акс = 180° - 60° = 120° ответ: 120° подробнее - на -
Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.(теорема) dа и dс - отрезки касательных, проведенных к большей окружности из точки d. => da=dc. dв и dс - отрезки касательных, проведенных к меньшей окружности из точки d.=> db=dc. два отрезка, равные третьему, равны между собой. => аd=bd ad: bd=1: 1 из чего следует аd: ab=1/2 и т.d середина ав.
P(ABCD)=32 см; BC=10 см; ∠D=150°; ∠BAK=30°.
Объяснение:
Рассмотрим четырехугольник KBMD. Сумма углов в четырехугольнике равна 360°, значит 30°+90°+90°+∠KDM=360°
Получаем, ∠KDM=360-210=150°
Так как сумма внутренних односторонних углов при параллельных прямых BC и AD, и секущей CD равна 180°, то ∠BCM+∠KDM=180°.
Следовательно, ∠BCM=180-150=30°.
В параллелограмме противоположные углы равны, значит ∠A=∠C=30°, тогда в прямоугольном треугольнике ABK гипотенуза AB=2*BK=2*3=6 см, а в прямоугольном треугольнике BMC гипотенуза BC=2*BM=2*5=10 см.
В параллелограмме противоположные стороны равны, значит:
AD=BC=10 см, CD=AB=6 см.
Периметр параллелограмма АВСD равен 10+10+6+6=32 см.