AD = AK + KD = 6 + 4 = 10 см - сторона ромба. ΔАВК: ∠АКВ = 90°, АВ = 10 см, АК = 6 см, по теореме Пифагора ВК = √(АВ² - АК²) = √(100 - 36) = √64 = 8 см
А) В треугольнике BCD отрезок МК - средняя линия, т.к. соединяет середины сторон. Значит MKIIBD, MK=1/2BD, отсюда BD=2*MK=2√5 см <DBC=<BDA как накрест лежащие углы при пересечении двух параллельных прямых ВС и AD секущей BD. В прямоугольном треугольнике ADB находим косинус угла BDA, зная катет BD и гипотенузу AD: cos BDA= BD/AD=2√5/2√10=1/√2=√2/2. Значит <BDA=<DBC=45°
б) Рассмотрим прямоугольный треугольник CDE. Здесь tg ECD=DE/CE, отсюда DE=tg ECD*CE=3CE и СЕ=DE/3 В прямоугольном треугольнике ВСЕ видим, что <BCE=180-<CEB-<CBE=180-90-45=45°, значит треугольник ВСЕ - равнобедренный, т.к. углы при его основании ВС равны ВЕ=СЕ, но СЕ=DE/3, значит ВЕ=DE/3. Значит DE/BE=3/1 Таким образом, отрезок BD состоит из 4 частей, каждая из которых равна: BD/4=2√5/4=√5/2 см Значит ВЕ=1 часть=√5/2 см
Билет №1. 1.Фигуры на плоскости 2 Центр окружности, описанной около треугольника, является точкой пересечения перпендикуляров к сторонам треугольника, проведенных через середины этих сторон. 3Рассмотрим ΔBAO и ΔOCD AO=OC - по условию BO=OD - по условию ∠AOB=∠COD - вертикальные ⇒ ΔBAO=ΔOCD - по первому признаку (2 стороны и угол между ними)
Билет №2. 1. геометрическая фигура, образованная двумя лучами (сторонами угла), выходящими из одной точки (которая называется вершиной угла)Это угол равный 180..Любой угол разделяет плоскость на 2 части. Если угол неразвёрнутый, то одна из частей называется внутренней, а другая внешней областью этого угла.Если угол развёрнутый, то любую из двух частей, на которые она разделяет плоскость можно считать внутренней областью угла. Фигуру, состоящую из угла и его внутренней области, так же называют углом.От любой полупрямой в заданную полуплоскость можно отложить угол с заданной градусной мерой, меньшей 180°,и только один. 2. Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею дуги пополам. 3.т. к. Сумма углов треугольника 180°, значит третий угол 180-32-57=91° Билет №3. 1.Равносторонним треугольником называется треугольник, у которого все его стороны равны.1) Все углы равностороннего треугольника равны по 60º.2) Высота, медиана и биссектриса, проведённые к каждой из сторон равностороннего треугольника, совпадают,3)Точка пересечения высот, биссектрис и медиан называется центром правильного треугольника и является центром вписанной и описанной окружностей (то есть в равностороннем треугольнике центры вписанной и описанной окружностей совпадают).4) Точка пересечения высот, биссектрис и медиан правильного треугольника делит каждую из них в отношении 2:1, считая от вершин.6) Расстояние от точки пересечения высот, биссектрис и медиан до любой стороны треугольника равно радиусу вписанной окружности.7) Сумма радиусов вписанной и описанной окружностей правильного треугольника равна его высоте, медиане и биссектрисе.8) Радиус вписанной в правильный треугольник окружности в два раза меньше радиуса описанной окружности. 2.Если из какой-нибудь точки провести две касательные к окружности, то их отрезки от данной точки до точек касания равны между собой и центр окружности находится на биссектрисе угла, образованного этими касательными. 3. Возьмем отрезок АД за х, тогда ОА = х+8: х+х+8=24. 2х=16, х=8
ΔАВК: ∠АКВ = 90°, АВ = 10 см, АК = 6 см, по теореме Пифагора
ВК = √(АВ² - АК²) = √(100 - 36) = √64 = 8 см
Sabcd = AD · BK = 10 · 8 = 80 см²
ΔBKD: ∠BKD = 90°, по теореме Пифагора
BD = √(BK² + KD²) = √(64 + 16) = √80 = 4√5 см
Sabcd = АС · BD/2
AC = 2·Sabcd /BD = 2·80/(4√5) = 40/√5 = 8√5 см