1. Если соединить центр вписанной окружности с вершинами, то треугольник "разобьется" на три, и в каждом роль высоты будет играть радиус в точку касания. Отсюда сразу следует нужная формула S = pr; p - полупериметр. Полезно запомнить её именно в этом виде. Важно и то, что такая формула справедлива не только для треугольника, но и для любого выпуклого многоугольника, в который можно вписать окружность. 2. Высота к стороне a равна b*sin(C), откуда S = a*b*sin(C)/2; при этом по теореме синусов c = 2*R*sin(C); или sin(C) = c/(2*R); откуда S = a*b*c/4R чтд.
Проведя три серединных перпендикуляра в треугольнике находим центр описанной окружности