Достаточно убедиться, что сумма квадратов катетов равна квадрату гипотенузы. Для этого считаем квадраты всех отрезков. АВ^2 = 0^2 + 2^2 + 6^2 = 40 BC^2 = 4^2 + 5^2 + 3 ^2 = 50 AC^2 = 4^2 + 7^2 + 3^2 = 74 Видно, что квадрат АС меньше суммы двух других квадратов. Треугольник остроугольный Если ты ошибся в условии и точка B имеет по z координату не 9, а 8, тогда треугольник будет прямоугольным АВ^2 = 29 BC^2 = 45 AC^2 = 74 Если нужно будет,то могу потом скинуть подробное решение,но треугольник по твоим координатам всё равно выходит-остроугольным
Раз Вы еще не проходили решение задач с синусов, вот дополнение к первому решению.
Вы уже поняли, как найдены стороны параллелограмма.
Периметр его 40. Если принять меньшую сторону за х, то большая сторона будет х+2
Запишем
2(х+х+2)=40
4х=36
х=9 -это меньшая сторона.
9+2=11- это большая сторона.
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°
Приняв один из углов за у, запишем:
у+ у+120=180°
2у=60°
у=30°
Нашли, что острый угол параллелограмма равен 30°
Сделайте простейший рисунок.
Опустите из вершины тупого угла на любую сторону высоту.
Пусть это будет высота ВН на сторону АD
ВН противолежит углу 30°
Вы уже учили, что катет прямоугольного треугольника, лежащий против угла 30°, равен половине гипотенузы.
У нас прямоугольный треугольник АВН, угол ВАН=30°
Следовательно, высота параллелограмма равна половине АВ и длина ее зависит от того, к какой стороне она проведена.
1) ВН=11:2=5,5 см
Площадь параллелограмма равна произведению высоты на сторону, к которой она проведена:
S=5,5*9=49,5 cм²
или
2)ВН=9:2=4,5 см
и тогда
S=4,5*11=49,5 см²