1. Угол между наклонной к плоскости и плоскостью - это угол между наклонной и ее проекцией на плоскость. Искомый угол - угол МАО. Высота правильного треугольника равна h=(√3/2)*a = (√3/2)*2√3=3. АО=(1/3)*h = 1 (свойство медианы). Tg(<MAO) = MO/AO = √3.
ответ: α = arctg√3 = 60°
2. Искомый угол - угол между наклонной и ее проекцией, то есть угол АВК. Sin(<ABK) = KA/KB = AC*tg60/5 = 5√3/11. <ABK = arcsin(0,787) ≈ 51,9°.
3. Опустим перпендикуляры SP и SH из точки S к сторонам АВ и АD соответственно. Прямоугольные треугольники APS и AHS равны по гипотенузе и острому углу. Значит АР=АН и АРОН - квадрат. тогда АО = АН*√2 (диагональ квадрата), АS = 2*АН (в треугольнике ASH катет АН лежит против угла 30°, а AS - гипотенуза). Косинус искомого угла (между наклонной AS и плоскостью АВСD, равного отношению проекции наклонной к наклонной) = АО/AS = АН√2/(2*АН) = √2/2.
ответ: искомый угол равен 45°.
найдите площадь боковой поверхности прямой призмы боковое ребро которой h=10см,а в основе лежит ромб с диагоналями d1=6см и d2=8см
РЕШЕНИЕ
половина меньшей диагонали x=d1/2=6/2=3
половина большей диагонали x=d2/2=8/2=4
сторона ромба b=√ (x^2+y^2) = √ (3^2+4^2) =√ 25 =5 см
периметр ромба P=4b =4*5=20
боковой поверхности прямой призмы Sбок =P*h = 20*10=200 см2
ОТВЕТ 200 см2