Хорды круга ав и сd пересекаются в точке о так, что ао : ов = 6: 1, со : оd = 2: 3, ао - ов = 20см. найдите отрезки, на которые точка о разбивает хорды ав; сd.
пусть ОВ - х, тогда АО - х+20. Т.к. ОВ - х, то АО - 6х. Следовательно 6х+х=х+х+20. 7х=2х+20, 5х=20, х=4. Т.е. ОВ=4, тогда АО=24. По свойсту пересекающихся хорд АО*ОВ=СО*ОD. Пусть 1 часть СD равна y, тогда 24*4=2х*3х, 96=6х², х²=16, х=4. Т.е. СО=2*4=8, ОD=3*4=12.
а)Так как Площадь сечения - энто треугольник. Причем равнобедренный, причем с вершиной равный 60 градусов. Значит равносторонний треугольник. Так как основание - диаметр конуса и равна соответственно 12 как и все остальные стороны. Вроде была там формула какая-то про площадь равностороннего треугольника, но я ее не вспомнил, поэтому ну ее =) Опускаем из вершины высоту. Длинну энтой высоты обозначим за Х. Второй катет есть равен 6 И гипотенуза равна 12 Тогда Х = SQRT (108) т.е. корень квадратный из 108. Дальше множим эту высоту на диаметр и делим на два (так как треугольник). В итоге получим что площадь равна 18 SQRT (3) Под б) Честно говоря забыл как вычислять площадь кругового сектора поэтому поступим по хитрому =) Зная что площадь ВСЕГО конуса вычисляется по формуле S1 = пR(R + L) Где R - радиус основания, а L образующая вычислим плозадь всего и отнимим от нее площадь основания (жесть так делать конечно =) ), которое вычисляется соответственно по формуле S2 = п R^2 S1 = п 6 (6 + 12) = 108 п S2 = п 6^2 = п 36 S = 72 п
пусть ОВ - х, тогда АО - х+20. Т.к. ОВ - х, то АО - 6х. Следовательно 6х+х=х+х+20. 7х=2х+20, 5х=20, х=4. Т.е. ОВ=4, тогда АО=24. По свойсту пересекающихся хорд АО*ОВ=СО*ОD. Пусть 1 часть СD равна y, тогда 24*4=2х*3х, 96=6х², х²=16, х=4. Т.е. СО=2*4=8, ОD=3*4=12.
ответ: АО=24, ОВ=4, СО=8, ОD=12.