1.Найдите площадь квадрата, если его периметр равен 100 см. У квадрата 4 стороны, и они равны, поэтому 100:4=25 одна сторона. Площадь =25*25=625 м2
2.Периметр прямоугольника равен 80 см, а длина в 3 раза больше ширины. Найдите его площадь? 80:2=40 см это суммы ширины и длины так как длина в3 раза больше, то это 3 части, а ширина 1 часть, всего 4 части 40:4=10 см это одна счасть, то есть ширина 10*3=30 см длина 10*30=300 см2 площадь
3.Стороны прямоугольника равны 25 см и 4 см. Каковы стороны равновеликого ему прямоугольника, у которого стороны равны? 25*4=100 см2 площадь √100=10 см сторона прямоугольника
4. Найдите периметр прямоугольника если его площадь равна 128 см², а длины его сторон относятся как 1 : 2. пусть одна сторона х, другая 2х 1х*2х=128 2х²=128 х²=64 х=8 см ширина 8*2=16 см длина 2*(8+16)=2*24=48 см периметр
5. Найдите стороны квадрата, площадь которого равна площади прямоугольника со сторонами 8 см и 98см. 8*98=784 см2 площадь прямоугольника √784=28 см стороны квадрата
6. Как измениться площадь прямоугольника, если его стороны уменьшить в 3 раза. х,у стороны прямоуг. х/3*у/3=ху/9 площадь уменьшится в 9 раз.
Если аб основание, тогда св боковая сторона, поскольку трапеция р/б, то св = ад = 10см, Проведём высоты из вершины тупых углов к большему основанию, обазначим их, как СМ и ДН. Получили два прямоугольных треугольника, которые равны по трём углам. Поскольку в р/б трапеции углы при основании равны, значит угол БСМ = углу АДН = 30градусам. АН и БМ из равенства треугольников равны. Также они лежат напротив угла в 30 градусов, соответсвенно равны 1/2 гипотенузы Т.е СВ, значит они равны 5 см. У нас остаётся отрезок МН = СД по свойству р/б трапеции. Поскоьку АБ=16, а АН и БМ 5 см, то НМ = СД = 6 см ответ: СД = 6 см
Поскольку В как угол квадрата не может быть 45°, речь должна идти про угол АВЕ.
Рисуем квадрат.
Из А возводим перпендикуляр к плосксости.
Соединяем В и Е.
Получился прямоугольный равнобедренный треугольник, т.к острые углы =45°
S ABCD= 4
У квадрата все стороны равны.
АВ=√4=2
S Δ АСЕ= АЕ·АС
АЕ=АВ=2
АС= 2√2 как диагональ квадрата.
S Δ АСЕ=2· 2√2=4√2