Попытаюсь решить на уровне 9 класса.
Кротчайшее расстояние от точки С до прямой AB будет лежать на высоте треугольника ABC - CH. Для точки D, соответственно кратчайшим расстоянием до AB будет расстояние DH. Найдём катет прямоугольного треугольника CB обозначив его за x: x^2 + x^2 = 16^2. x = 8\sqrt{2}8
2
. Далее в прямоугольном треугольнике СHB найдём СH: \sqrt{(8\sqrt{2})^{2} - 8^{2} } = 8
(8
2
)
2
−8
2
=8 . Далее найдём в прямоугольном (по условию) треугольнике CDH расстояние DH: \sqrt{6^{2} + 8^{2} } = 10
6
2
+8
2
=10
Внешний угол при вершине треугольника равен сумме внутренних углов треугольника, не смежных с ним.
Рассмотрим треугольник АВС.
Угол СВН - внешний угол при вершине, противоположной основанию.
ВМ- биссектриса этого угла. Она делит угол на два равных угла 1 и 2.
Так как внешний угол при В равен сумме внутренних углов А и С, а треугольник АВС равнобедренный и углы при его основании равны между собой, все выделенные углы также равны между собой.
Углы под номером 1 -равные соответственные при прямых АС и ВМ
и секущей АВ
Углы под номером 2 - равные накрестлежащие при прямых АС и ВМ
и секущей ВС
Если при пересечении двух прямых третьей внутренние накрестлежащие углы равны, то прямые параллельны.