Пусть дан АВСД - прямоугольник,
О - точка пересечения диагоналей АС и ВД
уг АОВ : уг ВОС = 2:7
Найти: уг ВАО и уг САД -?
1) 2+7=9 частей в смежных углах АОВ и ВОС, ⇒ 180:9=20* в одной части, ⇒ уг АОВ=40*, уг ВОС=140* (по свойству смежных углов)
2) тр АОВ - р/б, т.к. ВО=АО по свойству прямоугольника (диагонали прямоуг равны и точкой пересечения делятся пополам), ⇒ уг АВО = уг ВАО ( по св-ву углов в р/б тр) уг АВО = уг ВАО = (180-40):2=70*
3) уг ВАД = 90*, так АВСД - прямоугольник по условию, ⇒уг САД (он же ОАД) = 90-уг ВАО = 90-70 = 20*
ответ: 70* и 20*
Так как треугольник равнобедренный, то АВ=ВС=4х
4х+4х+3х=33
11х=33
х=3
ВС=4х=4·3=12 см
АВ=ВС=12 см
АС=3х=3·3=9 см
ответ. 12 см; 12 см; 9 см