М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ДиКабиден1000
ДиКабиден1000
25.08.2021 00:27 •  Геометрия

Решить : в прямоугольнике авсд ав=сд и вс=ад. докажите,что треугольник авс равен теугольнику асд

👇
Ответ:
цветочек751
цветочек751
25.08.2021
Дано : АВСД прямоугольник.
АВ=СД
ВС=АД

Требуется доказать что Треугольник АВС = Треугольнику АСД

Доказательство:

Сторона АВ=СВ - дано
Сторона АД=ВС - дано
Сторона АС=АС - общая сторона обоих треугольников. 

Отсюда следует что  Треугольник АВС = Треугольнику АСД по третьему признаку равенству треугольников ССС - сторона сторона сторона, 

Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольники равны.
4,5(98 оценок)
Открыть все ответы
Ответ:
katya8631
katya8631
25.08.2021

A1.

Sшестиугольника = \frac{3\sqrt{3} a^2}{2}

ответ: 4

A2.

Правильный четырёхугольник - это квадрат. Так как он вписан в окружность, то диаметр окружности будет равен диагонали квадрата. Диагонали квадрата пересекаются в центре и делят его на 4 одинаковых прямоугольных равнобедренных треугольника с бок. сторонами = R ⇒ S квадрата равна площади четырех треугольников:

S = 4 (\frac{R * R}{2} )= 2 R^2

ответ: 1

A3.

Правильный шестиугольник состоит из 6 равносторонних треугольников, стороны которых равны a, а высоты равны радиусу R. Найдем, чему равны стороны через высоту (радиус):

R = \frac{a\sqrt{3} }{2}

a = \frac{2R}{\sqrt{3}}

Площадь одного треугольника будет равна:

S = \frac{a^2\sqrt{3} }{4}= \frac{4R^2\sqrt{3} }{3*4} = \frac{R^2\sqrt{3}}{3 }

Площадь шестиугольника:

S_w = \frac{6R^2\sqrt{3} }{3} = 2R^2\sqrt{3}

ответ: 2

B1.

Пусть вписанный треугольник - ΔABC, сторона = a; описанный - ΔA₁B₁C₁, сторона - a_1

Для ΔA₁B₁C₁ радиус R = \frac{1}{3} высоты h

h^2 = a^2 - (\frac{1}{2} a)^2 = a^2 - \frac{1}{4} a^2 = \frac{3a^2}{4} \\h = \frac{a\sqrt{3} }{2}

R = \frac{a\sqrt{3} }{2} * \frac{1}{3} = \frac{a\sqrt{3} }{6}

a = \frac{6R}{\sqrt{3} } = \frac{6\sqrt{3}R}{\sqrt{3}*\sqrt{3}} = 2\sqrt{3}R

P = 3a; P_{A_1B_1C_1} = 3 * 2\sqrt{3} R = 6\sqrt{3} R

S = \frac{1}{2} a*h; S_{A_1B_1C_1} = \frac{1}{2} * 2\sqrt{3} R * \frac{2\sqrt{3} R * \sqrt{3} }{2} = \frac{4*3*\sqrt{3} R^2}{4} = 3\sqrt{3} R^2}

Для ΔABC радиус R = \frac{2}{3} высоты h:

R = \frac{a\sqrt{3} }{2} * \frac{2}{3} = \frac{a\sqrt{3} }{3}

a = \frac{R * 3}{\sqrt{3} } = \frac{3R * \sqrt{3} }{\sqrt{3} * \sqrt{3} } = \sqrt{3} R

P_{ABC} = 3\sqrt{3} R\\S_{ABC} = \frac{1}{2} * \sqrt{3} R * \frac{\sqrt{3}R*\sqrt{3}}{2} = \frac{3R^2 * \sqrt{3}}{4}

Найдем соотношение периметров и площадей:

S_{A_1B_1C_1} : S_{ABC} = 3\sqrt{3}R^2 : \frac{3R^2\sqrt{3} }{4} = 4: 1\\P_{A_1B_1C_1} : P_{ABC} = 6\sqrt{3}R : 3\sqrt{3}R = 2 : 1

4,6(89 оценок)
Ответ:
ARTMASS
ARTMASS
25.08.2021
Три стороны одинаковые, AB = BC = CD.
Четвертая сторона равна обоим диагоналям, AD = AC = BD.
Вот я примерно нарисовал этот 4-угольник.
Треугольник ABC равнобедренный с углами y (гамма).
Треугольник BCD равнобедренный с углами b (бета).
Треугольник ABD равнобедренный с углами a+y (a - альфа).
Треугольник ACD равнобедренный с углами a+b.
Получаем систему
{ a + (a + y) + (a + y) = 3a + 2y = 180 (ABD)
{ a + (a + b) + (a + b) = 3a + 2b = 180 (ACD)
{ (y + (a+b)) + b + b = a + y + 3b = 180 (BCD)
{ ((a+y) + b) + y + y = a + b + 3y = 180 (ABC)
Из 1 уравнения вычитаем 2 уравнение
2y - 2b = 0
b = y
Подставляем
{ 3a + 2b = 180
{ a + 4b = 180
Из 1 уравнения вычитаем 2 уравнение
2a - 2b = 0
a = b
То есть все три угла равны друг другу
a = b = y
3a + 2a = 5a = 180
a = b = y = 180/5 = 36 градусов.
Самый большой угол
y + (a+b) = 3a = 3*36 = 108 градусов.

Для четырехугольника abcdabcd справедливы равенства ab=bc=cdab=bc=cd и ad=ac=bdad=ac=bd. найдите бол
4,5(83 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ