Диагонали ромба делятся точкой пересечения пополам. В прямоугольном треугольнике 1 катет равен 20, второй 15, гипотенуза - она же сторона ромба равна по теореме Пифагора Корень из 20 в квадрате плюс 15 в квадрате, или корень из 625. Сторона ромба равна 25.
Если в прямоугольном треугольнике высота опущена на гипотенузу, то она делит её на отрезки, пропорциональные катетам треугольника.
Имеем: квадрат катета равен произведению гипотенузы на отрезок, прилежащий к данному катету. Или 20^2 = 25x х=16. Вторая часть гипотенузы = 25=16=9.
Вторая часть теоремы гласит: квадрат перпендикуляра равен произведению отрезков, на которые он делит гипотенузу.
h^2 = 16*9 h=4*3=12
Найдем медиану ВК в равностороннем треугольнике со стороной а=12 см, она же является и биссектрисой и высотой, по т.Пифагора
ВК=√а²-(а/2)²=а√3/2=12√3/2=6√3
Середина медианы - обозначим точку О, значит ВО=ОК=6√3/2=3√3
Из прямоугольного треугольника В1ВО найдем расстояние В1О по т.Пифагора
В1О=√В1В²+ВО²=√8²+(3√3)²=√64+27=√91≈9,54