На сторонах угла∡ABC точки A и C находятся в равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥BA CD⊥BC.
1. Чтобы доказать равенство ΔAFD и ΔCFE, докажем, что ΔBAE и ΔBCD, по второму признаку равенства треугольников:
BA=BC
∡BAF=∡BCF=90°
∡ABC — общий.
В этих треугольниках равны все соответсвующие эелементы, в том числе BD=BE, ∡D=∡E.
Если BD=BE и BA=BC, то BD−BA=BE−BC, то есть AD=CE.
Очевидно равенство ΔAFD и ΔCFE также доказываем по второму признаку равенства треугольников:
AD=CE
∡DAF=∡ECF=90°
∡D=∡
Подробнее - на -
Объяснение:
АС-10СМ
АВ-8СМ
Найти:
Sabc
ВС
т.к. треугольник прямоугольный, то по теореме пифагора: АС2(в квадрате)=ВС2+АВ2
ВС2=АС2-АВ2
ВС2=100-64
ВС=√36
ВС=6(см)
найдём площадь. площадь прям.треугольника равна половине произведения его катетов. 1/2•6•8=24см2