ответ: NM= 10см
Объяснение: высота NF делит ∆ MNK на два прямоугольных треугольника в которых высота NF является катетом. Рассмотрим полученный ∆NKF. По условиям угол NKF составляет 30°, а катет, который лежит напротив этого угла равен половине гипотенузы. Пусть катет NF будет х, тогда гипотенуза NK будет 2х. Составим уравнение и найдём стороны ∆MKF по теореме Пифагора:
NF²+FK²=NK²
x²+(6√3)²=(2x)²
x²+36×3=4x²
x²+108=4x²
x²-4x²= - 108
- 3x²= - 108
3x²=108
x²=108÷3
x²=36
x=6; сторона NF=6см, тогда гипотенуза NK будет 6×2=12см
Теперь найдём искомую сторону NM по теореме Пифагора, зная MF и NF:
NM²=MF²+NF²
NM=8²+6²=√(64+36)=√100=10см
NM=10см
ответ: NM= 10см
Объяснение: высота NF делит ∆ MNK на два прямоугольных треугольника в которых высота NF является катетом. Рассмотрим полученный ∆NKF. По условиям угол NKF составляет 30°, а катет, который лежит напротив этого угла равен половине гипотенузы. Пусть катет NF будет х, тогда гипотенуза NK будет 2х. Составим уравнение и найдём стороны ∆MKF по теореме Пифагора:
NF²+FK²=NK²
x²+(6√3)²=(2x)²
x²+36×3=4x²
x²+108=4x²
x²-4x²= - 108
- 3x²= - 108
3x²=108
x²=108÷3
x²=36
x=6; сторона NF=6см, тогда гипотенуза NK будет 6×2=12см
Теперь найдём искомую сторону NM по теореме Пифагора, зная MF и NF:
NM²=MF²+NF²
NM=8²+6²=√(64+36)=√100=10см
NM=10см
sinA = кв.корень(1-cosA*cosA) = кв корень(2)/2
sinA = CH/AC
AC = CH/sinA = 26корней из 2
AH^2 = AC^2 - CH^2
AH = 26
AB = AH*2 = 52