Высота основания правильной треугольной пирамиды равна 6см, а угол между боковым ребром и основанием пирамиды равен 30 градусов.найдите площадь полной поверхности и объём пирамиды.
Так... Заранее извиняюсь, если что-то будет повторяться и смешиваться. Печатаю и решаю одновременно просто... Предположим что у тебя пирамида КАВС(К - вершина). Раз она правильная то все боковые треугольники равнобедренные, а в основании равносторонний. Рассматриваешь треугольник КОА(О - центр основания). Он прямоугольный. tg30=KO/AO, следовательно АО=КО/tg30. В основании лежит равносторонний треугольник. О - точка пересечения медиан, высот и биссектрисс(в принципе это одни и те же линии). Делятся они в отношении 2 к 1 считая от вершины(тоесть наше АО это 2 части медианы, в целом она же будет равна АО*3/2). Далее из треугольника АМВ находим АВ(М - середина ВС). АВ=АМ/sin60 (в основании равносторонний значит все углы по 60). Далее находим площадь основания, она равна половине основания умноженого на высоту (1/2*АМ*АВ). Объем равен одной трети произведения площади основания на высоту (1/3*площадь основания*ОК). Теперь будем искать площадь!) Площадь основания мы уже нашли. Теперь ищем площадь боковой поверхности(там три одинаковых треугольника, поэтому найдем площадь одного и умножим на три). Тоже будем искать через формулу площади треугольника - половина онования на высоту. АВ мы уже нашли, ищем высоту. Через треугольник КОА ищем боковую сторону(АК=КО/sin30). По теореме пифагора найдем МК. МК=корень(АК^2-АМ^2). АМ=1/2*АВ. Ну дальше боковая площадь равна 3*1/2*АВ*КМ. И вся площадь поверхности равна этой площади + площадь основания. Должно быть правильно, но по ходу решения лучше перепроверяй.
Короче, тут всио просто) Дано: Значит, нам дан р/б треугольник АВС АВ=ВС ВД-высота ВД=12см АВ/АС=5/6
Найти: Стороны треугольника.
Решение: Т.к АВ/АС=5/6, то АВ=5х;АС=6х Т.к ВД-высота, то АД+ДС будут равны, а это значит, что АД=ДС=3х Находим Х: По т.Пифагора : Квадрат гипотенузы равен сумме квадратов катетов. Т.е (5х)^2=(3х)^2+12^2 25х^2=9х^2+144 Переносим Х в одну сторону, а другие числа в другую сторону, получаем: 25х^2-9х^2=144 16х^2=144 Х^2=9 Х=3 Осталось только подставить значение Х : АВ=5х=5*3=15 АС=6х=6*3=18 И получается, что основание нам известно, и строны тоже.
Короче, тут всио просто) Дано: Значит, нам дан р/б треугольник АВС АВ=ВС ВД-высота ВД=12см АВ/АС=5/6
Найти: Стороны треугольника.
Решение: Т.к АВ/АС=5/6, то АВ=5х;АС=6х Т.к ВД-высота, то АД+ДС будут равны, а это значит, что АД=ДС=3х Находим Х: По т.Пифагора : Квадрат гипотенузы равен сумме квадратов катетов. Т.е (5х)^2=(3х)^2+12^2 25х^2=9х^2+144 Переносим Х в одну сторону, а другие числа в другую сторону, получаем: 25х^2-9х^2=144 16х^2=144 Х^2=9 Х=3 Осталось только подставить значение Х : АВ=5х=5*3=15 АС=6х=6*3=18 И получается, что основание нам известно, и строны тоже.
Так... Заранее извиняюсь, если что-то будет повторяться и смешиваться. Печатаю и решаю одновременно просто... Предположим что у тебя пирамида КАВС(К - вершина). Раз она правильная то все боковые треугольники равнобедренные, а в основании равносторонний. Рассматриваешь треугольник КОА(О - центр основания). Он прямоугольный. tg30=KO/AO, следовательно АО=КО/tg30. В основании лежит равносторонний треугольник. О - точка пересечения медиан, высот и биссектрисс(в принципе это одни и те же линии). Делятся они в отношении 2 к 1 считая от вершины(тоесть наше АО это 2 части медианы, в целом она же будет равна АО*3/2). Далее из треугольника АМВ находим АВ(М - середина ВС). АВ=АМ/sin60 (в основании равносторонний значит все углы по 60). Далее находим площадь основания, она равна половине основания умноженого на высоту (1/2*АМ*АВ). Объем равен одной трети произведения площади основания на высоту (1/3*площадь основания*ОК). Теперь будем искать площадь!) Площадь основания мы уже нашли. Теперь ищем площадь боковой поверхности(там три одинаковых треугольника, поэтому найдем площадь одного и умножим на три). Тоже будем искать через формулу площади треугольника - половина онования на высоту. АВ мы уже нашли, ищем высоту. Через треугольник КОА ищем боковую сторону(АК=КО/sin30). По теореме пифагора найдем МК. МК=корень(АК^2-АМ^2). АМ=1/2*АВ. Ну дальше боковая площадь равна 3*1/2*АВ*КМ. И вся площадь поверхности равна этой площади + площадь основания. Должно быть правильно, но по ходу решения лучше перепроверяй.