Диагонали ромба пересекаются под прямым углом и в точке пересечения делятся пополам. Кроме того, диагонали ромба являются биссектрисами его углов. Имеем прямоугольный треугольник, у которого один из катетов равен d/2, прилежащий к нему угол равен a/2. Сторона ромба, которую необходимо найти, является гипотенузой полученного прямоугольного треугольника. Обозначим ее х. Длина катета равна произведению длины гипотенузы и косинуса прилежащего угла: d/2=х*cos a/2. Отсюда х=d:2cosа/2
Обозначим меньшую диагональ как y. Длина катета равна произведению длины гипотенузы и синуса противолежащего угла. Из тех же свойств прямоугольного треугольника y/2= х*sina/2
Подставляем вместо х найденное значение гипотенузы: y/2=d:2cosa/2
Упростив, имеем: y=2d:2cosa/2
В итоге: y=d:cosa/2
ответ: сторона ромба равна d:2cosa/2; меньшая диагональ ромба равна d:cosa/2.
Дан треугольник с вершинами А (-1;4 ), В (-2;-4), С (6;3).
Угол А - это угол между прямыми АВ и АС.
Используем формулу определения тангенса угла между прямыми по их угловым коэффициентам.
Для этого находим угловые коэффициенты к прямых АВ и АС.
А (-1;4 ), В (-2;-4), С (6;3)
к(АВ) = Δу/Δх = (4-(-4))/(-1-(-2)) = 8/1 = 8. Это к_2
к(АС) = (4-3)/(-1-6) = 1/(-7) = -1/7. Это к_1
tg φ = |(к_2 - к_1)/(1 + к_1*к_2)| = |(8 - (-1/7))/(1+8*(-1/7))| = 57.
φ = arc tg 57 = 1,553254267 радиан = 88,99491399°.