Не сказано какую высоту нужно найти, по этому найдем высоты, проведенные к основанию и к боковой стороне Пусть дан треугольник АВС , СР- высота, проведенная к боковой стороне, АК-высота, проведенная к основанию. Высота,проведенная к основанию: Высота,проведенная к основанию, делит р.б треугольник на два равных прямоугольных треугольника, рассмотрим один из них: ΔСАК : СА - гипотенуза 13 см, СК, АК- катеты СК=СВ/2=24/2=12 см По т. Пифагора найдём катет АК Найдём площадь ΔАВС, чтобы найти высоту СР Также площадь можно найти через высоту СР и боковую сторону,к которой высота проведена, АВ
Высота равнобедренного треугольника проведенная из его вершины найдем из прямоугольного треугольника с катетом = 5 (половина основания) и гипотенузой = 13 (боковая сторона), получаем h^2 = 169 - 25 =144, h=12. Высоту равнобедренного треугольника проведенная к боковой стороне найдем из двух прямоугольных треугольников на которые она его делит. В первом треугольнике гипотенуза равна 13(боковая сторона), а катет обозначим х, во втором треугольнике гипотенуза равна 10 (основание) и катет равен (13-х). По теореме Пифагора h^2=169-x^2 = 100 - (13-х)^2. 26x=238, x=9 целых 2/13. h^2=169-(9 целых 2/13)^2, h=120/13=9 3/13.
Катеты прямоугольного треугольника равны a=3 см и b=4 см.
гипотенуза по теореме Пифагора
c^2 =a^2+b^2
c^2=3^2+4^2=25
c=5
биссектриса прямого угла через длины его сторон
Lc= √(ab*(a+b+c)(a+b-c)) /(a+b) =√(3*4*(3+4+5)(3+4-5)) /(3+4)=12√2 /7
ОТВЕТ 12√2 /7