ответ: ДО=8√3см
Объяснение: обозначим вершины основания пирамиды А В С, вершину пирамиды Д, а её высоту ДО. В основании правильной трёхугольной пирамиды лежит равносторонний треугольник, поэтому АВ=ВС=АС=72м
Найдём площадь основания по формуле:
S=a²√3/4,где а- сторона основания:
S=72²√3/4=5184//√3/4=1296√3см²
S=1296см².
Проведём из вершин основания медианы АН и ВК. Они пересекаясь в точке О делятся между собой в отношении 2:1, начиная от вершины треугольника: АО: ОН=2:1. Также медиана является ещё и высотой, поскольку треугольник равносторонний. Найдём высоту основания через площадь следуя формуле обратной формуле площади:
S=½×a×h
h=S÷a÷½=1296÷72÷½=18×2=36см
h=36см
Обозначим пропорции 2:1 как 2х и х, и зная величину высоты, составим уравнение:
2х+х=36
3х=36
х=36/3
х=12
ОН=12см, тогда АО=12×2=24см.
Рассмотрим ∆АДО. Он прямоугольный где АО и ДО- катеты, а АД- гипотенуза. Угол ДАО=30°, по условиям, а катет лежащий напротив него равен половине гипотенузы, поэтому ДО=½× АД
Пусть ДО=х, тогда АД=2х, зная, что АО=24см, составим уравнение используя теорему Пифагора:
АД²-ДР²=АО²
(2х)²-х²=24²
4х²-х²=576
3х²=576
х²=576/3
х²=192
х=√192=√(3×64)=8√3
Итак: ДО=8√3см
а) О-центр окружности
АОВ- прямоугольный равнобедренный треуг.
угол О=90 центральный
углы А=В=45
ОА=ОВ=4 катеты
АВ-гипотенуза=4√2
расстояние от центра окр-ти до этой хорды ОВ*sin45=4*√2/2=2√2
б) угол С=45 лежит по другую сторону от центра О от хорды АВ-он вписаный угол , опирается на ту же хорду , что и центральный угол АОВ
--равен половине АОВ/2=90/2=45
теперь дуги дуга АС : дуга СВ = 5 : 4
--на хорде АВ--маленькая дуга АВ и большая АВ(проходит через т.С)
маленькую отсекает угол АСВ=45 град, а большую 315 (360-45)
большую дугуразобьем на 9 частей (5+4) ,
тогда АС =315 * 5/9 = 175 (уголАВС) и СВ =315 * 4/9 = 140(уголВАС)
в) по теореме синусов АВ/sin(ACB)=BC/sin(BAC) ; 4√2/sin45=BC/sin140
BC=4√2/sin45 *sin140=4*sin140