В результате вращения прямоугольного треугольника образуется КОНУС. В нем: образующая = 10 см, и угол между боковой стороной и основанием = 30°.
Рассмотрим ΔSOA ( SA=10 см, угол А=30°). Т.к. катет SO лежит против угла 30°, то он равен половине гипотенузы, то есть 5 см.
Дальше нужно найти катет АО. За теоремой Пифагора он равен √75.
Теперь нужно найти площать основания. S(осн.) = πr² = (√75)²π = 75π cm².
Теперь объём: V(конуса) = ⅓ S(осн.)×Н, где Н-высота конуса.
V=⅓ × 75 × 5 =125 см³.
ответ: 125 см³.
Если один угол = 60, то другой = 30. Против угла, равного 30, лежит катет, равный 1/2 гипотенузы. Значит, одна сторона прям. = 4 см. Другая ищется по теореме Пифагора: √64-16=√48=4√3 (см), следовательно, S = 4*4√3=16√3 (см^2).
ответ: 16√3 см^2.