На окружности даны три точки: a, b, c. можно ли с циркуля и линейки отметить на этой окружности такую точку d, чтобы в четырёхугольник abcd можно было вписать окружность?
Можно. Но хлопотно. Чтобы доказать, что можно , построение делать необязательно. Раз есть точки АВД, то найти точку С можно из следующих соображений. Пуссть диагональ АД=к. Ясно, что достаточно найти (построить ) диагональ АС=р. Есть теорема Птолемея для вписанного четырехугольника. рк=ас+вд. Здесь АВ=а, ВС=в, ВД=с, АД=д в и д неизвестны. Однако, поскольку четырехугольник описанный : в-д=а-с. Тогда ясно, что р строится циркулем и линейкой при стандартных построений.
Вот пришло в голову решение :) Так-то задачка ерундовая :) Я продлеваю перпендикуляры HK и HM за точку H до пересечения с BA в точке A1 и BC в точке C1 (ну, точки лежат на продолжениях... из за того, что ∠ABC острый, эти точки есть и лежат где положено :) ) Для треугольника A1BC1 H - точка пересечения высот (ну двух-то точно :) - A1M и C1K), поэтому A1C1 перпендикулярно BH, и, следовательно, параллельно AC; то есть ∠BAC = ∠BA1C; Точки K и M лежат на окружности, построенной на A1C1, как на диаметре, поэтому ∠BA1C + ∠KMC = 180°; как противоположные углы вписанного четырехугольника. Или, что же самое, ∠BA1C = ∠BMK; следовательно ∠BAC = ∠BMK; и треугольники ABC и BMK имеют равные углы. То есть, подобны.
Следствие, которое важнее задачи :) Четырехугольник AKMC - вписанный. То есть через эти 4 точки можно провести окружность.
Дополнение. Тривиальный решения тут такой. ∠KHB = ∠A; ∠MHB = ∠C; BK = BH*sin(A) = BC*sin(C)*sin(A); BM = BH*sin(C) = BA*sin(A)*sin(C); То есть у треугольников ABC и MBK угол B общий, и стороны общего угла пропорциональны BM/BA = BK/BC = sin(A)*sin(B); значит треугольники подобны. коэффициент подобия sin(A)*sin(C), что тоже полезное следствие.
Пуссть диагональ АД=к. Ясно, что достаточно найти (построить ) диагональ АС=р.
Есть теорема Птолемея для вписанного четырехугольника.
рк=ас+вд. Здесь АВ=а, ВС=в, ВД=с, АД=д
в и д неизвестны.
Однако, поскольку четырехугольник описанный : в-д=а-с.
Тогда ясно, что р строится циркулем и линейкой при стандартных построений.