Отрезки ab и cd являются окружности. найдите расстояние от центра окружности до хорды cd, если ab=40, cd=42, а расстояние от центра окружности до хорды ab равно 21. решение и пояснения как решили
Построим окружность с центром в точке о и проведем хорды АВ и СД удовлетворяющие условиям задачи.
Найдем радиус данной окружности: Построим радиусы ОА и ОВ, а также ОЕ- расстояние от центра окружности до хорды АВ (ОЕ ⊥ АВ) Рассмотрим получившийся треугольник ОАВ – равнобедренный, так как ОА=ОВ (радиусы окружности). Так как ОАВ равнобедренный, то ОЕ - является и высотой и медианой. Значит АЕ=АВ/2=40/2=20 Рассмотрим треугольник ОАЕ: угол ОЕА – прямой. По теореме Пифагора найдем ОА: ОА= √(АЕ^2+OE^2)= √(20^2+21^2)= √(400+441)= √841=29 – Мы нашли радиус окружности.
Теперь находим расстояние от центра окружности до хорды СД: Построим радиусы ОС и ОД, а также ОF- расстояние от центра окружности до хорды СД (ОF ⊥ СД) Рассмотрим получившийся треугольник ОСД – равнобедренный, так как ОС=ОД (радиусы окружности). Так как ОCД равнобедренный, то ОF - является и высотой и медианой. Значит СF=СД/2=42/2=21 Рассмотрим треугольник ОCF: угол ОFC – прямой. По теореме Пифагора найдем ОF: OF=√(OC^2-CF^2)= √(29^2-21^2)= √(841-441)= √400=20 ответ: расстояние от центра окружности до хорды СД равно 20
Треугольник АВС, АВ=ВС, ВД-высота=медиане=биссектрисе=20, АС/АВ=4/3=4х/3х, АС=4х, АВ=3х, АД=СД=1/2АС=4х/2=2х, треугольник АВД прямоугольный, АВ в квадрате-АД в квадрате=ВД в квадрате, 9*х в квадрате-4*х в квадрате=400, х в квадрате=80, х=4*корень5, АД=2*4*корень5=8*корень5, АС=2*АД=2*8*корень5=16*корень5, АВ=3*4*корень5=12*корень5
площадь АВС=1/2*АС*ВД=1/2*16*корень5*20=160*корень5, полупериметрАВС=(12*корень5+12*корень5+16*корень5)/2=20*корень5,
Найдем радиус данной окружности:
Построим радиусы ОА и ОВ, а также ОЕ- расстояние от центра окружности до хорды АВ (ОЕ ⊥ АВ)
Рассмотрим получившийся треугольник ОАВ – равнобедренный, так как ОА=ОВ (радиусы окружности).
Так как ОАВ равнобедренный, то ОЕ - является и высотой и медианой. Значит АЕ=АВ/2=40/2=20
Рассмотрим треугольник ОАЕ: угол ОЕА – прямой.
По теореме Пифагора найдем ОА:
ОА= √(АЕ^2+OE^2)= √(20^2+21^2)= √(400+441)= √841=29 – Мы нашли радиус окружности.
Теперь находим расстояние от центра окружности до хорды СД:
Построим радиусы ОС и ОД, а также ОF- расстояние от центра окружности до хорды СД (ОF ⊥ СД)
Рассмотрим получившийся треугольник ОСД – равнобедренный, так как ОС=ОД (радиусы окружности).
Так как ОCД равнобедренный, то ОF - является и высотой и медианой.
Значит СF=СД/2=42/2=21
Рассмотрим треугольник ОCF: угол ОFC – прямой.
По теореме Пифагора найдем ОF:
OF=√(OC^2-CF^2)= √(29^2-21^2)= √(841-441)= √400=20
ответ: расстояние от центра окружности до хорды СД равно 20